Loading…
Improved near-lossless technique using the Huffman coding for enhancing the quality of image compression
Digital data compression aims to reduce the size of digital files in line with technological development. However, most data is distinguished by its large size, which requires a large storage capacity, and requires a long time in transmission operations via the Internet. Therefore, a new compress fi...
Saved in:
Published in: | Multimedia tools and applications 2022-08, Vol.81 (20), p.28509-28529 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Digital data compression aims to reduce the size of digital files in line with technological development. However, most data is distinguished by its large size, which requires a large storage capacity, and requires a long time in transmission operations via the Internet. Therefore, a new compress files method is needed to reduce the image size, maintain its quality, utilize storage spaces, and minimize time. This paper aims to improve digital image compression’s compression rates by dividing the image into several blocks. Thus, a new near-lossless method using the Huffman Coding technique is proposed. Digital image compression techniques are classified as lossless and lossy. Huffman Coding is a lossless-based technique used in the proposed method to maintain image quality during compression. The proposed method consists of several steps, which are dividing the image into blocks, finding the lowest value in each block and subtracting it from the rest of the values in the same block, then subtracting one from the odd numbers, dividing all the values on two, and finally applying the Huffman Coding technique to the block. The proposed method is applied to a well-known gray and color set with different types and different dimensions. Standard evaluation measures are used (i.e., PSNR, MSE, and CR) to evaluate the proposed method’s performance. When compressing images using the proposed method, the results demonstrated 0.11% enhancement when used two by two blocks. It also got high compression rates (25%). |
---|---|
ISSN: | 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-022-12846-8 |