Loading…

Identification of Urban Green Space Types and Estimation of Above-Ground Biomass Using Sentinel-1 and Sentinel-2 Data

High-quality urban green space supports the healthy functioning of urban ecosystems. This study aimed to rapidly assess the distribution, and accurately estimate the above-ground biomass, of urban green space using remote sensing methods, thus providing a better understanding of the urban ecological...

Full description

Saved in:
Bibliographic Details
Published in:Forests 2022-07, Vol.13 (7), p.1077
Main Authors: Xiao, Jue, Chen, Longqian, Zhang, Ting, Li, Long, Yu, Ziqi, Wu, Ran, Bai, Luofei, Xiao, Jianying, Chen, Longgao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-quality urban green space supports the healthy functioning of urban ecosystems. This study aimed to rapidly assess the distribution, and accurately estimate the above-ground biomass, of urban green space using remote sensing methods, thus providing a better understanding of the urban ecological environment in Xuzhou for more effective management. We performed urban green space classifications and compared the performance of Sentinel-2 MSI data and Sentinel-1 SAR data and combinations, for estimating above-ground biomass, using field data from Xuzhou, China. The results showed the following: (1) incorporating an object-oriented method and random forest algorithm to extract urban green space information was effective; (2) compared with stepwise regression models with single-source data, biomass estimation models based on multi-source data provide higher estimation accuracy (R2 = 0.77 for coniferous forest, R2 = 0.76 for shrub-grass vegetation, R2 = 0.75 for broadleaf forest); and (3) from 2016 to 2021, urban green space coverage in Xuzhou decreased, while the total above-ground biomass increased, with higher average above-ground biomass in broadleaf forests (133.71 tons/ha) compared to coniferous forests (92.13 tons/ha) and shrub-grass vegetation (21.65 tons/ha). Our study provides an example of automated classification and above-ground biomass mapping for urban green space using multi-source data and facilitates urban eco-management.
ISSN:1999-4907
1999-4907
DOI:10.3390/f13071077