Loading…

Maximizing the mechanical performance of Ti3AlC2-based MAX phases with aid of machine learning

Mechanical properties consisting of the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, etc., are key factors in determining the practical applications of MAX phases. These mechanical properties are mainly dependent on the strength of M-X and M-A bonds. In this study, a novel strategy...

Full description

Saved in:
Bibliographic Details
Published in:Journal of advanced ceramics 2022-08, Vol.11 (8), p.1307-1318
Main Authors: Duan, Xingjun, Fang, Zhi, Yang, Tao, Guo, Chunyu, Han, Zhongkang, Sarker, Debalaya, Hou, Xinmei, Wang, Enhui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-595b90907d82b2f02e9f4fd8c401a8c68d02b9a603a80dde79d31ed7d7817b463
cites cdi_FETCH-LOGICAL-c359t-595b90907d82b2f02e9f4fd8c401a8c68d02b9a603a80dde79d31ed7d7817b463
container_end_page 1318
container_issue 8
container_start_page 1307
container_title Journal of advanced ceramics
container_volume 11
creator Duan, Xingjun
Fang, Zhi
Yang, Tao
Guo, Chunyu
Han, Zhongkang
Sarker, Debalaya
Hou, Xinmei
Wang, Enhui
description Mechanical properties consisting of the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, etc., are key factors in determining the practical applications of MAX phases. These mechanical properties are mainly dependent on the strength of M-X and M-A bonds. In this study, a novel strategy based on the crystal graph convolution neural network (CGCNN) model has been successfully employed to tune these mechanical properties of Ti 3 AlC 2 -based MAX phases via the A-site substitution (Ti 3 (Al 1− x A x )C 2 ). The structure—property correlation between the A-site substitution and mechanical properties of Ti 3 (Al 1− x A x )C 2 is established. The results show that the thermodynamic stability of Ti 3 (Al 1− x A x )C 2 is enhanced with substitutions A = Ga, Si, Sn, Ge, Te, As, or Sb. The stiffness of Ti 3 AlC 2 increases with the substitution concentration of Si or As increasing, and the higher thermal shock resistance is closely associated with the substitution of Sn or Te. In addition, the plasticity of Ti 3 AlC 2 can be greatly improved when As, Sn, or Ge is used as a substitution. The findings and understandings demonstrated herein can provide universal guidance for the individual synthesis of high-performance MAX phases for various applications.
doi_str_mv 10.1007/s40145-022-0612-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2694117219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2694117219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-595b90907d82b2f02e9f4fd8c401a8c68d02b9a603a80dde79d31ed7d7817b463</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EElXpB7CzxNowdpzYXlYVL6kVmyKxwnJip3GVF3YqHl9PSpBYsZpZnHtHcxC6pHBNAcRN5EB5SoAxAhllhJ-gGWNMEJmCPP3ZM8IpyHO0iHEPADThVCkxQ68b8-Eb_-XbHR4qhxtXVKb1halx70LZhca0hcNdibc-WdYrRnITncWb5Qvuq3GN-N0PFTbeHqHGFJVvHa6dCe3YeYHOSlNHt_idc_R8d7tdPZD10_3jarkmRZKqgaQqzRUoEFaynJXAnCp5aWUxPmZkkUkLLFcmg8RIsNYJZRPqrLBCUpHzLJmjq6m3D93bwcVB77tDaMeTmmWKUyoYVSNFJ6oIXYzBlboPvjHhU1PQR5N6MqlHk_poUvMxw6ZMHNl258Jf8_-hb7jDdJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694117219</pqid></control><display><type>article</type><title>Maximizing the mechanical performance of Ti3AlC2-based MAX phases with aid of machine learning</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Free Full-Text Journals in Chemistry</source><creator>Duan, Xingjun ; Fang, Zhi ; Yang, Tao ; Guo, Chunyu ; Han, Zhongkang ; Sarker, Debalaya ; Hou, Xinmei ; Wang, Enhui</creator><creatorcontrib>Duan, Xingjun ; Fang, Zhi ; Yang, Tao ; Guo, Chunyu ; Han, Zhongkang ; Sarker, Debalaya ; Hou, Xinmei ; Wang, Enhui</creatorcontrib><description>Mechanical properties consisting of the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, etc., are key factors in determining the practical applications of MAX phases. These mechanical properties are mainly dependent on the strength of M-X and M-A bonds. In this study, a novel strategy based on the crystal graph convolution neural network (CGCNN) model has been successfully employed to tune these mechanical properties of Ti 3 AlC 2 -based MAX phases via the A-site substitution (Ti 3 (Al 1− x A x )C 2 ). The structure—property correlation between the A-site substitution and mechanical properties of Ti 3 (Al 1− x A x )C 2 is established. The results show that the thermodynamic stability of Ti 3 (Al 1− x A x )C 2 is enhanced with substitutions A = Ga, Si, Sn, Ge, Te, As, or Sb. The stiffness of Ti 3 AlC 2 increases with the substitution concentration of Si or As increasing, and the higher thermal shock resistance is closely associated with the substitution of Sn or Te. In addition, the plasticity of Ti 3 AlC 2 can be greatly improved when As, Sn, or Ge is used as a substitution. The findings and understandings demonstrated herein can provide universal guidance for the individual synthesis of high-performance MAX phases for various applications.</description><identifier>ISSN: 2226-4108</identifier><identifier>EISSN: 2227-8508</identifier><identifier>DOI: 10.1007/s40145-022-0612-4</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Antimony ; Artificial neural networks ; Bonding strength ; Bulk modulus ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Germanium ; Glass ; Machine learning ; Materials Science ; Mechanical properties ; Modulus of elasticity ; Nanotechnology ; Natural Materials ; Phases ; Poisson's ratio ; Research Article ; Shear modulus ; Shock resistance ; Silicon ; Stiffness ; Structural Materials ; Substitutes ; Thermal resistance ; Thermal shock ; Tin</subject><ispartof>Journal of advanced ceramics, 2022-08, Vol.11 (8), p.1307-1318</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-595b90907d82b2f02e9f4fd8c401a8c68d02b9a603a80dde79d31ed7d7817b463</citedby><cites>FETCH-LOGICAL-c359t-595b90907d82b2f02e9f4fd8c401a8c68d02b9a603a80dde79d31ed7d7817b463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2694117219/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2694117219?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Duan, Xingjun</creatorcontrib><creatorcontrib>Fang, Zhi</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Guo, Chunyu</creatorcontrib><creatorcontrib>Han, Zhongkang</creatorcontrib><creatorcontrib>Sarker, Debalaya</creatorcontrib><creatorcontrib>Hou, Xinmei</creatorcontrib><creatorcontrib>Wang, Enhui</creatorcontrib><title>Maximizing the mechanical performance of Ti3AlC2-based MAX phases with aid of machine learning</title><title>Journal of advanced ceramics</title><addtitle>J Adv Ceram</addtitle><description>Mechanical properties consisting of the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, etc., are key factors in determining the practical applications of MAX phases. These mechanical properties are mainly dependent on the strength of M-X and M-A bonds. In this study, a novel strategy based on the crystal graph convolution neural network (CGCNN) model has been successfully employed to tune these mechanical properties of Ti 3 AlC 2 -based MAX phases via the A-site substitution (Ti 3 (Al 1− x A x )C 2 ). The structure—property correlation between the A-site substitution and mechanical properties of Ti 3 (Al 1− x A x )C 2 is established. The results show that the thermodynamic stability of Ti 3 (Al 1− x A x )C 2 is enhanced with substitutions A = Ga, Si, Sn, Ge, Te, As, or Sb. The stiffness of Ti 3 AlC 2 increases with the substitution concentration of Si or As increasing, and the higher thermal shock resistance is closely associated with the substitution of Sn or Te. In addition, the plasticity of Ti 3 AlC 2 can be greatly improved when As, Sn, or Ge is used as a substitution. The findings and understandings demonstrated herein can provide universal guidance for the individual synthesis of high-performance MAX phases for various applications.</description><subject>Antimony</subject><subject>Artificial neural networks</subject><subject>Bonding strength</subject><subject>Bulk modulus</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Germanium</subject><subject>Glass</subject><subject>Machine learning</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Phases</subject><subject>Poisson's ratio</subject><subject>Research Article</subject><subject>Shear modulus</subject><subject>Shock resistance</subject><subject>Silicon</subject><subject>Stiffness</subject><subject>Structural Materials</subject><subject>Substitutes</subject><subject>Thermal resistance</subject><subject>Thermal shock</subject><subject>Tin</subject><issn>2226-4108</issn><issn>2227-8508</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kMtOwzAQRS0EElXpB7CzxNowdpzYXlYVL6kVmyKxwnJip3GVF3YqHl9PSpBYsZpZnHtHcxC6pHBNAcRN5EB5SoAxAhllhJ-gGWNMEJmCPP3ZM8IpyHO0iHEPADThVCkxQ68b8-Eb_-XbHR4qhxtXVKb1halx70LZhca0hcNdibc-WdYrRnITncWb5Qvuq3GN-N0PFTbeHqHGFJVvHa6dCe3YeYHOSlNHt_idc_R8d7tdPZD10_3jarkmRZKqgaQqzRUoEFaynJXAnCp5aWUxPmZkkUkLLFcmg8RIsNYJZRPqrLBCUpHzLJmjq6m3D93bwcVB77tDaMeTmmWKUyoYVSNFJ6oIXYzBlboPvjHhU1PQR5N6MqlHk_poUvMxw6ZMHNl258Jf8_-hb7jDdJc</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Duan, Xingjun</creator><creator>Fang, Zhi</creator><creator>Yang, Tao</creator><creator>Guo, Chunyu</creator><creator>Han, Zhongkang</creator><creator>Sarker, Debalaya</creator><creator>Hou, Xinmei</creator><creator>Wang, Enhui</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220801</creationdate><title>Maximizing the mechanical performance of Ti3AlC2-based MAX phases with aid of machine learning</title><author>Duan, Xingjun ; Fang, Zhi ; Yang, Tao ; Guo, Chunyu ; Han, Zhongkang ; Sarker, Debalaya ; Hou, Xinmei ; Wang, Enhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-595b90907d82b2f02e9f4fd8c401a8c68d02b9a603a80dde79d31ed7d7817b463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antimony</topic><topic>Artificial neural networks</topic><topic>Bonding strength</topic><topic>Bulk modulus</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Germanium</topic><topic>Glass</topic><topic>Machine learning</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Phases</topic><topic>Poisson's ratio</topic><topic>Research Article</topic><topic>Shear modulus</topic><topic>Shock resistance</topic><topic>Silicon</topic><topic>Stiffness</topic><topic>Structural Materials</topic><topic>Substitutes</topic><topic>Thermal resistance</topic><topic>Thermal shock</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Xingjun</creatorcontrib><creatorcontrib>Fang, Zhi</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Guo, Chunyu</creatorcontrib><creatorcontrib>Han, Zhongkang</creatorcontrib><creatorcontrib>Sarker, Debalaya</creatorcontrib><creatorcontrib>Hou, Xinmei</creatorcontrib><creatorcontrib>Wang, Enhui</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of advanced ceramics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Xingjun</au><au>Fang, Zhi</au><au>Yang, Tao</au><au>Guo, Chunyu</au><au>Han, Zhongkang</au><au>Sarker, Debalaya</au><au>Hou, Xinmei</au><au>Wang, Enhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing the mechanical performance of Ti3AlC2-based MAX phases with aid of machine learning</atitle><jtitle>Journal of advanced ceramics</jtitle><stitle>J Adv Ceram</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>11</volume><issue>8</issue><spage>1307</spage><epage>1318</epage><pages>1307-1318</pages><issn>2226-4108</issn><eissn>2227-8508</eissn><abstract>Mechanical properties consisting of the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, etc., are key factors in determining the practical applications of MAX phases. These mechanical properties are mainly dependent on the strength of M-X and M-A bonds. In this study, a novel strategy based on the crystal graph convolution neural network (CGCNN) model has been successfully employed to tune these mechanical properties of Ti 3 AlC 2 -based MAX phases via the A-site substitution (Ti 3 (Al 1− x A x )C 2 ). The structure—property correlation between the A-site substitution and mechanical properties of Ti 3 (Al 1− x A x )C 2 is established. The results show that the thermodynamic stability of Ti 3 (Al 1− x A x )C 2 is enhanced with substitutions A = Ga, Si, Sn, Ge, Te, As, or Sb. The stiffness of Ti 3 AlC 2 increases with the substitution concentration of Si or As increasing, and the higher thermal shock resistance is closely associated with the substitution of Sn or Te. In addition, the plasticity of Ti 3 AlC 2 can be greatly improved when As, Sn, or Ge is used as a substitution. The findings and understandings demonstrated herein can provide universal guidance for the individual synthesis of high-performance MAX phases for various applications.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s40145-022-0612-4</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2226-4108
ispartof Journal of advanced ceramics, 2022-08, Vol.11 (8), p.1307-1318
issn 2226-4108
2227-8508
language eng
recordid cdi_proquest_journals_2694117219
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access ; Free Full-Text Journals in Chemistry
subjects Antimony
Artificial neural networks
Bonding strength
Bulk modulus
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composites
Germanium
Glass
Machine learning
Materials Science
Mechanical properties
Modulus of elasticity
Nanotechnology
Natural Materials
Phases
Poisson's ratio
Research Article
Shear modulus
Shock resistance
Silicon
Stiffness
Structural Materials
Substitutes
Thermal resistance
Thermal shock
Tin
title Maximizing the mechanical performance of Ti3AlC2-based MAX phases with aid of machine learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20the%20mechanical%20performance%20of%20Ti3AlC2-based%20MAX%20phases%20with%20aid%20of%20machine%20learning&rft.jtitle=Journal%20of%20advanced%20ceramics&rft.au=Duan,%20Xingjun&rft.date=2022-08-01&rft.volume=11&rft.issue=8&rft.spage=1307&rft.epage=1318&rft.pages=1307-1318&rft.issn=2226-4108&rft.eissn=2227-8508&rft_id=info:doi/10.1007/s40145-022-0612-4&rft_dat=%3Cproquest_cross%3E2694117219%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-595b90907d82b2f02e9f4fd8c401a8c68d02b9a603a80dde79d31ed7d7817b463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2694117219&rft_id=info:pmid/&rfr_iscdi=true