Loading…
Maximizing the mechanical performance of Ti3AlC2-based MAX phases with aid of machine learning
Mechanical properties consisting of the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, etc., are key factors in determining the practical applications of MAX phases. These mechanical properties are mainly dependent on the strength of M-X and M-A bonds. In this study, a novel strategy...
Saved in:
Published in: | Journal of advanced ceramics 2022-08, Vol.11 (8), p.1307-1318 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-595b90907d82b2f02e9f4fd8c401a8c68d02b9a603a80dde79d31ed7d7817b463 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-595b90907d82b2f02e9f4fd8c401a8c68d02b9a603a80dde79d31ed7d7817b463 |
container_end_page | 1318 |
container_issue | 8 |
container_start_page | 1307 |
container_title | Journal of advanced ceramics |
container_volume | 11 |
creator | Duan, Xingjun Fang, Zhi Yang, Tao Guo, Chunyu Han, Zhongkang Sarker, Debalaya Hou, Xinmei Wang, Enhui |
description | Mechanical properties consisting of the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, etc., are key factors in determining the practical applications of MAX phases. These mechanical properties are mainly dependent on the strength of M-X and M-A bonds. In this study, a novel strategy based on the crystal graph convolution neural network (CGCNN) model has been successfully employed to tune these mechanical properties of Ti
3
AlC
2
-based MAX phases via the A-site substitution (Ti
3
(Al
1−
x
A
x
)C
2
). The structure—property correlation between the A-site substitution and mechanical properties of Ti
3
(Al
1−
x
A
x
)C
2
is established. The results show that the thermodynamic stability of Ti
3
(Al
1−
x
A
x
)C
2
is enhanced with substitutions A = Ga, Si, Sn, Ge, Te, As, or Sb. The stiffness of Ti
3
AlC
2
increases with the substitution concentration of Si or As increasing, and the higher thermal shock resistance is closely associated with the substitution of Sn or Te. In addition, the plasticity of Ti
3
AlC
2
can be greatly improved when As, Sn, or Ge is used as a substitution. The findings and understandings demonstrated herein can provide universal guidance for the individual synthesis of high-performance MAX phases for various applications. |
doi_str_mv | 10.1007/s40145-022-0612-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2694117219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2694117219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-595b90907d82b2f02e9f4fd8c401a8c68d02b9a603a80dde79d31ed7d7817b463</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EElXpB7CzxNowdpzYXlYVL6kVmyKxwnJip3GVF3YqHl9PSpBYsZpZnHtHcxC6pHBNAcRN5EB5SoAxAhllhJ-gGWNMEJmCPP3ZM8IpyHO0iHEPADThVCkxQ68b8-Eb_-XbHR4qhxtXVKb1halx70LZhca0hcNdibc-WdYrRnITncWb5Qvuq3GN-N0PFTbeHqHGFJVvHa6dCe3YeYHOSlNHt_idc_R8d7tdPZD10_3jarkmRZKqgaQqzRUoEFaynJXAnCp5aWUxPmZkkUkLLFcmg8RIsNYJZRPqrLBCUpHzLJmjq6m3D93bwcVB77tDaMeTmmWKUyoYVSNFJ6oIXYzBlboPvjHhU1PQR5N6MqlHk_poUvMxw6ZMHNl258Jf8_-hb7jDdJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694117219</pqid></control><display><type>article</type><title>Maximizing the mechanical performance of Ti3AlC2-based MAX phases with aid of machine learning</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Free Full-Text Journals in Chemistry</source><creator>Duan, Xingjun ; Fang, Zhi ; Yang, Tao ; Guo, Chunyu ; Han, Zhongkang ; Sarker, Debalaya ; Hou, Xinmei ; Wang, Enhui</creator><creatorcontrib>Duan, Xingjun ; Fang, Zhi ; Yang, Tao ; Guo, Chunyu ; Han, Zhongkang ; Sarker, Debalaya ; Hou, Xinmei ; Wang, Enhui</creatorcontrib><description>Mechanical properties consisting of the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, etc., are key factors in determining the practical applications of MAX phases. These mechanical properties are mainly dependent on the strength of M-X and M-A bonds. In this study, a novel strategy based on the crystal graph convolution neural network (CGCNN) model has been successfully employed to tune these mechanical properties of Ti
3
AlC
2
-based MAX phases via the A-site substitution (Ti
3
(Al
1−
x
A
x
)C
2
). The structure—property correlation between the A-site substitution and mechanical properties of Ti
3
(Al
1−
x
A
x
)C
2
is established. The results show that the thermodynamic stability of Ti
3
(Al
1−
x
A
x
)C
2
is enhanced with substitutions A = Ga, Si, Sn, Ge, Te, As, or Sb. The stiffness of Ti
3
AlC
2
increases with the substitution concentration of Si or As increasing, and the higher thermal shock resistance is closely associated with the substitution of Sn or Te. In addition, the plasticity of Ti
3
AlC
2
can be greatly improved when As, Sn, or Ge is used as a substitution. The findings and understandings demonstrated herein can provide universal guidance for the individual synthesis of high-performance MAX phases for various applications.</description><identifier>ISSN: 2226-4108</identifier><identifier>EISSN: 2227-8508</identifier><identifier>DOI: 10.1007/s40145-022-0612-4</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Antimony ; Artificial neural networks ; Bonding strength ; Bulk modulus ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Germanium ; Glass ; Machine learning ; Materials Science ; Mechanical properties ; Modulus of elasticity ; Nanotechnology ; Natural Materials ; Phases ; Poisson's ratio ; Research Article ; Shear modulus ; Shock resistance ; Silicon ; Stiffness ; Structural Materials ; Substitutes ; Thermal resistance ; Thermal shock ; Tin</subject><ispartof>Journal of advanced ceramics, 2022-08, Vol.11 (8), p.1307-1318</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-595b90907d82b2f02e9f4fd8c401a8c68d02b9a603a80dde79d31ed7d7817b463</citedby><cites>FETCH-LOGICAL-c359t-595b90907d82b2f02e9f4fd8c401a8c68d02b9a603a80dde79d31ed7d7817b463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2694117219/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2694117219?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Duan, Xingjun</creatorcontrib><creatorcontrib>Fang, Zhi</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Guo, Chunyu</creatorcontrib><creatorcontrib>Han, Zhongkang</creatorcontrib><creatorcontrib>Sarker, Debalaya</creatorcontrib><creatorcontrib>Hou, Xinmei</creatorcontrib><creatorcontrib>Wang, Enhui</creatorcontrib><title>Maximizing the mechanical performance of Ti3AlC2-based MAX phases with aid of machine learning</title><title>Journal of advanced ceramics</title><addtitle>J Adv Ceram</addtitle><description>Mechanical properties consisting of the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, etc., are key factors in determining the practical applications of MAX phases. These mechanical properties are mainly dependent on the strength of M-X and M-A bonds. In this study, a novel strategy based on the crystal graph convolution neural network (CGCNN) model has been successfully employed to tune these mechanical properties of Ti
3
AlC
2
-based MAX phases via the A-site substitution (Ti
3
(Al
1−
x
A
x
)C
2
). The structure—property correlation between the A-site substitution and mechanical properties of Ti
3
(Al
1−
x
A
x
)C
2
is established. The results show that the thermodynamic stability of Ti
3
(Al
1−
x
A
x
)C
2
is enhanced with substitutions A = Ga, Si, Sn, Ge, Te, As, or Sb. The stiffness of Ti
3
AlC
2
increases with the substitution concentration of Si or As increasing, and the higher thermal shock resistance is closely associated with the substitution of Sn or Te. In addition, the plasticity of Ti
3
AlC
2
can be greatly improved when As, Sn, or Ge is used as a substitution. The findings and understandings demonstrated herein can provide universal guidance for the individual synthesis of high-performance MAX phases for various applications.</description><subject>Antimony</subject><subject>Artificial neural networks</subject><subject>Bonding strength</subject><subject>Bulk modulus</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Germanium</subject><subject>Glass</subject><subject>Machine learning</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Phases</subject><subject>Poisson's ratio</subject><subject>Research Article</subject><subject>Shear modulus</subject><subject>Shock resistance</subject><subject>Silicon</subject><subject>Stiffness</subject><subject>Structural Materials</subject><subject>Substitutes</subject><subject>Thermal resistance</subject><subject>Thermal shock</subject><subject>Tin</subject><issn>2226-4108</issn><issn>2227-8508</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kMtOwzAQRS0EElXpB7CzxNowdpzYXlYVL6kVmyKxwnJip3GVF3YqHl9PSpBYsZpZnHtHcxC6pHBNAcRN5EB5SoAxAhllhJ-gGWNMEJmCPP3ZM8IpyHO0iHEPADThVCkxQ68b8-Eb_-XbHR4qhxtXVKb1halx70LZhca0hcNdibc-WdYrRnITncWb5Qvuq3GN-N0PFTbeHqHGFJVvHa6dCe3YeYHOSlNHt_idc_R8d7tdPZD10_3jarkmRZKqgaQqzRUoEFaynJXAnCp5aWUxPmZkkUkLLFcmg8RIsNYJZRPqrLBCUpHzLJmjq6m3D93bwcVB77tDaMeTmmWKUyoYVSNFJ6oIXYzBlboPvjHhU1PQR5N6MqlHk_poUvMxw6ZMHNl258Jf8_-hb7jDdJc</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Duan, Xingjun</creator><creator>Fang, Zhi</creator><creator>Yang, Tao</creator><creator>Guo, Chunyu</creator><creator>Han, Zhongkang</creator><creator>Sarker, Debalaya</creator><creator>Hou, Xinmei</creator><creator>Wang, Enhui</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220801</creationdate><title>Maximizing the mechanical performance of Ti3AlC2-based MAX phases with aid of machine learning</title><author>Duan, Xingjun ; Fang, Zhi ; Yang, Tao ; Guo, Chunyu ; Han, Zhongkang ; Sarker, Debalaya ; Hou, Xinmei ; Wang, Enhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-595b90907d82b2f02e9f4fd8c401a8c68d02b9a603a80dde79d31ed7d7817b463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antimony</topic><topic>Artificial neural networks</topic><topic>Bonding strength</topic><topic>Bulk modulus</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Germanium</topic><topic>Glass</topic><topic>Machine learning</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Phases</topic><topic>Poisson's ratio</topic><topic>Research Article</topic><topic>Shear modulus</topic><topic>Shock resistance</topic><topic>Silicon</topic><topic>Stiffness</topic><topic>Structural Materials</topic><topic>Substitutes</topic><topic>Thermal resistance</topic><topic>Thermal shock</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Xingjun</creatorcontrib><creatorcontrib>Fang, Zhi</creatorcontrib><creatorcontrib>Yang, Tao</creatorcontrib><creatorcontrib>Guo, Chunyu</creatorcontrib><creatorcontrib>Han, Zhongkang</creatorcontrib><creatorcontrib>Sarker, Debalaya</creatorcontrib><creatorcontrib>Hou, Xinmei</creatorcontrib><creatorcontrib>Wang, Enhui</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of advanced ceramics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Xingjun</au><au>Fang, Zhi</au><au>Yang, Tao</au><au>Guo, Chunyu</au><au>Han, Zhongkang</au><au>Sarker, Debalaya</au><au>Hou, Xinmei</au><au>Wang, Enhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing the mechanical performance of Ti3AlC2-based MAX phases with aid of machine learning</atitle><jtitle>Journal of advanced ceramics</jtitle><stitle>J Adv Ceram</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>11</volume><issue>8</issue><spage>1307</spage><epage>1318</epage><pages>1307-1318</pages><issn>2226-4108</issn><eissn>2227-8508</eissn><abstract>Mechanical properties consisting of the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, etc., are key factors in determining the practical applications of MAX phases. These mechanical properties are mainly dependent on the strength of M-X and M-A bonds. In this study, a novel strategy based on the crystal graph convolution neural network (CGCNN) model has been successfully employed to tune these mechanical properties of Ti
3
AlC
2
-based MAX phases via the A-site substitution (Ti
3
(Al
1−
x
A
x
)C
2
). The structure—property correlation between the A-site substitution and mechanical properties of Ti
3
(Al
1−
x
A
x
)C
2
is established. The results show that the thermodynamic stability of Ti
3
(Al
1−
x
A
x
)C
2
is enhanced with substitutions A = Ga, Si, Sn, Ge, Te, As, or Sb. The stiffness of Ti
3
AlC
2
increases with the substitution concentration of Si or As increasing, and the higher thermal shock resistance is closely associated with the substitution of Sn or Te. In addition, the plasticity of Ti
3
AlC
2
can be greatly improved when As, Sn, or Ge is used as a substitution. The findings and understandings demonstrated herein can provide universal guidance for the individual synthesis of high-performance MAX phases for various applications.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s40145-022-0612-4</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2226-4108 |
ispartof | Journal of advanced ceramics, 2022-08, Vol.11 (8), p.1307-1318 |
issn | 2226-4108 2227-8508 |
language | eng |
recordid | cdi_proquest_journals_2694117219 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access ; Free Full-Text Journals in Chemistry |
subjects | Antimony Artificial neural networks Bonding strength Bulk modulus Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Composites Germanium Glass Machine learning Materials Science Mechanical properties Modulus of elasticity Nanotechnology Natural Materials Phases Poisson's ratio Research Article Shear modulus Shock resistance Silicon Stiffness Structural Materials Substitutes Thermal resistance Thermal shock Tin |
title | Maximizing the mechanical performance of Ti3AlC2-based MAX phases with aid of machine learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20the%20mechanical%20performance%20of%20Ti3AlC2-based%20MAX%20phases%20with%20aid%20of%20machine%20learning&rft.jtitle=Journal%20of%20advanced%20ceramics&rft.au=Duan,%20Xingjun&rft.date=2022-08-01&rft.volume=11&rft.issue=8&rft.spage=1307&rft.epage=1318&rft.pages=1307-1318&rft.issn=2226-4108&rft.eissn=2227-8508&rft_id=info:doi/10.1007/s40145-022-0612-4&rft_dat=%3Cproquest_cross%3E2694117219%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-595b90907d82b2f02e9f4fd8c401a8c68d02b9a603a80dde79d31ed7d7817b463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2694117219&rft_id=info:pmid/&rfr_iscdi=true |