Loading…
Simulating Chern insulators on a superconducting quantum processor
The quantum Hall effect, fundamental in modern condensed matter physics, continuously inspires new theories and predicts emergent phases of matter. Here we experimentally demonstrate three types of Chern insulators with synthetic dimensions on a programable 30-qubit-ladder superconducting processor....
Saved in:
Published in: | arXiv.org 2023-09 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zhong-Cheng, Xiang Huang, Kaixuan Yu-Ran, Zhang Liu, Tao Yun-Hao, Shi Cheng-Lin, Deng Liu, Tong Li, Hao Gui-Han, Liang Zheng-Yang, Mei Yu, Haifeng Xue, Guangming Tian, Ye Song, Xiaohui Zhi-Bo Liu Xu, Kai Zheng, Dongning Nori, Franco Fan, Heng |
description | The quantum Hall effect, fundamental in modern condensed matter physics, continuously inspires new theories and predicts emergent phases of matter. Here we experimentally demonstrate three types of Chern insulators with synthetic dimensions on a programable 30-qubit-ladder superconducting processor. We directly measure the band structures of the 2D Chern insulator along synthetic dimensions with various configurations of Aubry-André-Harper chains and observe dynamical localisation of edge excitations. With these two signatures of topology, our experiments implement the bulk-edge correspondence in the synthetic 2D Chern insulator. Moreover, we simulate two different bilayer Chern insulators on the ladder-type superconducting processor. With the same and opposite periodically modulated on-site potentials for two coupled chains, we simulate topologically nontrivial edge states with zero Hall conductivity and a Chern insulator with higher Chern numbers, respectively. Our work shows the potential of using superconducting qubits for investigating different intriguing topological phases of quantum matter. |
doi_str_mv | 10.48550/arxiv.2207.11797 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2694705084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2694705084</sourcerecordid><originalsourceid>FETCH-LOGICAL-a957-5fac0b33d341f28e17b2725c10c8659244e9df4c5862f8ab79a04e92fc817e1d3</originalsourceid><addsrcrecordid>eNotjk1LAzEURYMgWGp_gLuA6xlfXpJJstTBLyi4sPuSySQ6pc20yUT8-Y7a1YXD5Z5LyA2DWmgp4c6m7-GrRgRVM6aMuiAL5JxVWiBekVXOOwDARqGUfEEe3odD2dtpiB-0_fQp0iHmXzCmTMdILc3l6JMbY1_cX-tUbJzKgR7T6HzOY7oml8Hus1-dc0k2T4-b9qVavz2_tvfryhqpKhmsg47zngsWUHumOpw_OAZON9KgEN70QTipGwzadspYmBEGp5nyrOdLcvs_O4tPxedpuxtLirNxi40RCiRowX8AtiZMSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694705084</pqid></control><display><type>article</type><title>Simulating Chern insulators on a superconducting quantum processor</title><source>Publicly Available Content Database</source><creator>Zhong-Cheng, Xiang ; Huang, Kaixuan ; Yu-Ran, Zhang ; Liu, Tao ; Yun-Hao, Shi ; Cheng-Lin, Deng ; Liu, Tong ; Li, Hao ; Gui-Han, Liang ; Zheng-Yang, Mei ; Yu, Haifeng ; Xue, Guangming ; Tian, Ye ; Song, Xiaohui ; Zhi-Bo Liu ; Xu, Kai ; Zheng, Dongning ; Nori, Franco ; Fan, Heng</creator><creatorcontrib>Zhong-Cheng, Xiang ; Huang, Kaixuan ; Yu-Ran, Zhang ; Liu, Tao ; Yun-Hao, Shi ; Cheng-Lin, Deng ; Liu, Tong ; Li, Hao ; Gui-Han, Liang ; Zheng-Yang, Mei ; Yu, Haifeng ; Xue, Guangming ; Tian, Ye ; Song, Xiaohui ; Zhi-Bo Liu ; Xu, Kai ; Zheng, Dongning ; Nori, Franco ; Fan, Heng</creatorcontrib><description>The quantum Hall effect, fundamental in modern condensed matter physics, continuously inspires new theories and predicts emergent phases of matter. Here we experimentally demonstrate three types of Chern insulators with synthetic dimensions on a programable 30-qubit-ladder superconducting processor. We directly measure the band structures of the 2D Chern insulator along synthetic dimensions with various configurations of Aubry-André-Harper chains and observe dynamical localisation of edge excitations. With these two signatures of topology, our experiments implement the bulk-edge correspondence in the synthetic 2D Chern insulator. Moreover, we simulate two different bilayer Chern insulators on the ladder-type superconducting processor. With the same and opposite periodically modulated on-site potentials for two coupled chains, we simulate topologically nontrivial edge states with zero Hall conductivity and a Chern insulator with higher Chern numbers, respectively. Our work shows the potential of using superconducting qubits for investigating different intriguing topological phases of quantum matter.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2207.11797</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chains ; Condensed matter physics ; Electromagnetism ; Electrons ; Microprocessors ; Onsite ; Quantum Hall effect ; Qubits (quantum computing) ; Simulation ; Superconductivity ; Topology</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2694705084?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhong-Cheng, Xiang</creatorcontrib><creatorcontrib>Huang, Kaixuan</creatorcontrib><creatorcontrib>Yu-Ran, Zhang</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Yun-Hao, Shi</creatorcontrib><creatorcontrib>Cheng-Lin, Deng</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Gui-Han, Liang</creatorcontrib><creatorcontrib>Zheng-Yang, Mei</creatorcontrib><creatorcontrib>Yu, Haifeng</creatorcontrib><creatorcontrib>Xue, Guangming</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Song, Xiaohui</creatorcontrib><creatorcontrib>Zhi-Bo Liu</creatorcontrib><creatorcontrib>Xu, Kai</creatorcontrib><creatorcontrib>Zheng, Dongning</creatorcontrib><creatorcontrib>Nori, Franco</creatorcontrib><creatorcontrib>Fan, Heng</creatorcontrib><title>Simulating Chern insulators on a superconducting quantum processor</title><title>arXiv.org</title><description>The quantum Hall effect, fundamental in modern condensed matter physics, continuously inspires new theories and predicts emergent phases of matter. Here we experimentally demonstrate three types of Chern insulators with synthetic dimensions on a programable 30-qubit-ladder superconducting processor. We directly measure the band structures of the 2D Chern insulator along synthetic dimensions with various configurations of Aubry-André-Harper chains and observe dynamical localisation of edge excitations. With these two signatures of topology, our experiments implement the bulk-edge correspondence in the synthetic 2D Chern insulator. Moreover, we simulate two different bilayer Chern insulators on the ladder-type superconducting processor. With the same and opposite periodically modulated on-site potentials for two coupled chains, we simulate topologically nontrivial edge states with zero Hall conductivity and a Chern insulator with higher Chern numbers, respectively. Our work shows the potential of using superconducting qubits for investigating different intriguing topological phases of quantum matter.</description><subject>Chains</subject><subject>Condensed matter physics</subject><subject>Electromagnetism</subject><subject>Electrons</subject><subject>Microprocessors</subject><subject>Onsite</subject><subject>Quantum Hall effect</subject><subject>Qubits (quantum computing)</subject><subject>Simulation</subject><subject>Superconductivity</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjk1LAzEURYMgWGp_gLuA6xlfXpJJstTBLyi4sPuSySQ6pc20yUT8-Y7a1YXD5Z5LyA2DWmgp4c6m7-GrRgRVM6aMuiAL5JxVWiBekVXOOwDARqGUfEEe3odD2dtpiB-0_fQp0iHmXzCmTMdILc3l6JMbY1_cX-tUbJzKgR7T6HzOY7oml8Hus1-dc0k2T4-b9qVavz2_tvfryhqpKhmsg47zngsWUHumOpw_OAZON9KgEN70QTipGwzadspYmBEGp5nyrOdLcvs_O4tPxedpuxtLirNxi40RCiRowX8AtiZMSw</recordid><startdate>20230907</startdate><enddate>20230907</enddate><creator>Zhong-Cheng, Xiang</creator><creator>Huang, Kaixuan</creator><creator>Yu-Ran, Zhang</creator><creator>Liu, Tao</creator><creator>Yun-Hao, Shi</creator><creator>Cheng-Lin, Deng</creator><creator>Liu, Tong</creator><creator>Li, Hao</creator><creator>Gui-Han, Liang</creator><creator>Zheng-Yang, Mei</creator><creator>Yu, Haifeng</creator><creator>Xue, Guangming</creator><creator>Tian, Ye</creator><creator>Song, Xiaohui</creator><creator>Zhi-Bo Liu</creator><creator>Xu, Kai</creator><creator>Zheng, Dongning</creator><creator>Nori, Franco</creator><creator>Fan, Heng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230907</creationdate><title>Simulating Chern insulators on a superconducting quantum processor</title><author>Zhong-Cheng, Xiang ; Huang, Kaixuan ; Yu-Ran, Zhang ; Liu, Tao ; Yun-Hao, Shi ; Cheng-Lin, Deng ; Liu, Tong ; Li, Hao ; Gui-Han, Liang ; Zheng-Yang, Mei ; Yu, Haifeng ; Xue, Guangming ; Tian, Ye ; Song, Xiaohui ; Zhi-Bo Liu ; Xu, Kai ; Zheng, Dongning ; Nori, Franco ; Fan, Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a957-5fac0b33d341f28e17b2725c10c8659244e9df4c5862f8ab79a04e92fc817e1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chains</topic><topic>Condensed matter physics</topic><topic>Electromagnetism</topic><topic>Electrons</topic><topic>Microprocessors</topic><topic>Onsite</topic><topic>Quantum Hall effect</topic><topic>Qubits (quantum computing)</topic><topic>Simulation</topic><topic>Superconductivity</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhong-Cheng, Xiang</creatorcontrib><creatorcontrib>Huang, Kaixuan</creatorcontrib><creatorcontrib>Yu-Ran, Zhang</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Yun-Hao, Shi</creatorcontrib><creatorcontrib>Cheng-Lin, Deng</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Gui-Han, Liang</creatorcontrib><creatorcontrib>Zheng-Yang, Mei</creatorcontrib><creatorcontrib>Yu, Haifeng</creatorcontrib><creatorcontrib>Xue, Guangming</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Song, Xiaohui</creatorcontrib><creatorcontrib>Zhi-Bo Liu</creatorcontrib><creatorcontrib>Xu, Kai</creatorcontrib><creatorcontrib>Zheng, Dongning</creatorcontrib><creatorcontrib>Nori, Franco</creatorcontrib><creatorcontrib>Fan, Heng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong-Cheng, Xiang</au><au>Huang, Kaixuan</au><au>Yu-Ran, Zhang</au><au>Liu, Tao</au><au>Yun-Hao, Shi</au><au>Cheng-Lin, Deng</au><au>Liu, Tong</au><au>Li, Hao</au><au>Gui-Han, Liang</au><au>Zheng-Yang, Mei</au><au>Yu, Haifeng</au><au>Xue, Guangming</au><au>Tian, Ye</au><au>Song, Xiaohui</au><au>Zhi-Bo Liu</au><au>Xu, Kai</au><au>Zheng, Dongning</au><au>Nori, Franco</au><au>Fan, Heng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating Chern insulators on a superconducting quantum processor</atitle><jtitle>arXiv.org</jtitle><date>2023-09-07</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The quantum Hall effect, fundamental in modern condensed matter physics, continuously inspires new theories and predicts emergent phases of matter. Here we experimentally demonstrate three types of Chern insulators with synthetic dimensions on a programable 30-qubit-ladder superconducting processor. We directly measure the band structures of the 2D Chern insulator along synthetic dimensions with various configurations of Aubry-André-Harper chains and observe dynamical localisation of edge excitations. With these two signatures of topology, our experiments implement the bulk-edge correspondence in the synthetic 2D Chern insulator. Moreover, we simulate two different bilayer Chern insulators on the ladder-type superconducting processor. With the same and opposite periodically modulated on-site potentials for two coupled chains, we simulate topologically nontrivial edge states with zero Hall conductivity and a Chern insulator with higher Chern numbers, respectively. Our work shows the potential of using superconducting qubits for investigating different intriguing topological phases of quantum matter.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2207.11797</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2694705084 |
source | Publicly Available Content Database |
subjects | Chains Condensed matter physics Electromagnetism Electrons Microprocessors Onsite Quantum Hall effect Qubits (quantum computing) Simulation Superconductivity Topology |
title | Simulating Chern insulators on a superconducting quantum processor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20Chern%20insulators%20on%20a%20superconducting%20quantum%20processor&rft.jtitle=arXiv.org&rft.au=Zhong-Cheng,%20Xiang&rft.date=2023-09-07&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2207.11797&rft_dat=%3Cproquest%3E2694705084%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a957-5fac0b33d341f28e17b2725c10c8659244e9df4c5862f8ab79a04e92fc817e1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2694705084&rft_id=info:pmid/&rfr_iscdi=true |