Loading…

Moiré straintronics: a universal platform for reconfigurable quantum materials

Large scale two-dimensional (2D) moiré superlattices are driving a revolution in designer quantum materials. The electronic interactions in these superlattices, strongly dependent on the periodicity and symmetry of the moiré pattern, critically determine the emergent properties and phase diagrams. T...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-07
Main Authors: Kögl, M, Soubelet, P, Brotons-Gisbert, M, Stier, A V, Gerardot, B D, Finley, J J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kögl, M
Soubelet, P
Brotons-Gisbert, M
Stier, A V
Gerardot, B D
Finley, J J
description Large scale two-dimensional (2D) moiré superlattices are driving a revolution in designer quantum materials. The electronic interactions in these superlattices, strongly dependent on the periodicity and symmetry of the moiré pattern, critically determine the emergent properties and phase diagrams. To date, the relative twist angle between two layers has been the primary tuning parameter for a given choice of constituent crystals. Here, we establish strain as a powerful mechanism to in-situ modify the moiré periodicity and symmetry. We develop an analytically exact mathematical description for the moiré lattice under arbitrary in-plane heterostrain acting on any bilayer structure. We demonstrate the ability to fine-tune the moiré lattice near critical points, such as the magic angle in bilayer graphene, or fully reconfigure the moiré lattice symmetry beyond that imposed by the unstrained constituent crystals. Due to this unprecedented simultaneous control over the strength of electronic interactions and lattice symmetry, 2D heterostrain provides a powerful platform to engineer, tune, and probe strongly correlated moiré materials.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2694709882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2694709882</sourcerecordid><originalsourceid>FETCH-proquest_journals_26947098823</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6EJN-3YriRty4l2dJJSVN2pfEO3kOL2YXHsDNzGJmwRIh5S6rcyFWLPW-55yLshJFIRN2vThNnzf4QKhtIGd16_eAEK1-KfJoYDQYOkcDzABSrbOdfkbCh1EwRbQhDjBgUKTR-A1bdrNU-vOabU_H2-GcjeSmqHy49y6SndNdlE1e8aauhfzv-gIiq0CN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694709882</pqid></control><display><type>article</type><title>Moiré straintronics: a universal platform for reconfigurable quantum materials</title><source>ProQuest - Publicly Available Content Database</source><creator>Kögl, M ; Soubelet, P ; Brotons-Gisbert, M ; Stier, A V ; Gerardot, B D ; Finley, J J</creator><creatorcontrib>Kögl, M ; Soubelet, P ; Brotons-Gisbert, M ; Stier, A V ; Gerardot, B D ; Finley, J J</creatorcontrib><description>Large scale two-dimensional (2D) moiré superlattices are driving a revolution in designer quantum materials. The electronic interactions in these superlattices, strongly dependent on the periodicity and symmetry of the moiré pattern, critically determine the emergent properties and phase diagrams. To date, the relative twist angle between two layers has been the primary tuning parameter for a given choice of constituent crystals. Here, we establish strain as a powerful mechanism to in-situ modify the moiré periodicity and symmetry. We develop an analytically exact mathematical description for the moiré lattice under arbitrary in-plane heterostrain acting on any bilayer structure. We demonstrate the ability to fine-tune the moiré lattice near critical points, such as the magic angle in bilayer graphene, or fully reconfigure the moiré lattice symmetry beyond that imposed by the unstrained constituent crystals. Due to this unprecedented simultaneous control over the strength of electronic interactions and lattice symmetry, 2D heterostrain provides a powerful platform to engineer, tune, and probe strongly correlated moiré materials.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bilayers ; Constituents ; Critical point ; Crystal lattices ; Graphene ; Moire patterns ; Phase diagrams ; Superlattices ; Symmetry</subject><ispartof>arXiv.org, 2022-07</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2694709882?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Kögl, M</creatorcontrib><creatorcontrib>Soubelet, P</creatorcontrib><creatorcontrib>Brotons-Gisbert, M</creatorcontrib><creatorcontrib>Stier, A V</creatorcontrib><creatorcontrib>Gerardot, B D</creatorcontrib><creatorcontrib>Finley, J J</creatorcontrib><title>Moiré straintronics: a universal platform for reconfigurable quantum materials</title><title>arXiv.org</title><description>Large scale two-dimensional (2D) moiré superlattices are driving a revolution in designer quantum materials. The electronic interactions in these superlattices, strongly dependent on the periodicity and symmetry of the moiré pattern, critically determine the emergent properties and phase diagrams. To date, the relative twist angle between two layers has been the primary tuning parameter for a given choice of constituent crystals. Here, we establish strain as a powerful mechanism to in-situ modify the moiré periodicity and symmetry. We develop an analytically exact mathematical description for the moiré lattice under arbitrary in-plane heterostrain acting on any bilayer structure. We demonstrate the ability to fine-tune the moiré lattice near critical points, such as the magic angle in bilayer graphene, or fully reconfigure the moiré lattice symmetry beyond that imposed by the unstrained constituent crystals. Due to this unprecedented simultaneous control over the strength of electronic interactions and lattice symmetry, 2D heterostrain provides a powerful platform to engineer, tune, and probe strongly correlated moiré materials.</description><subject>Bilayers</subject><subject>Constituents</subject><subject>Critical point</subject><subject>Crystal lattices</subject><subject>Graphene</subject><subject>Moire patterns</subject><subject>Phase diagrams</subject><subject>Superlattices</subject><subject>Symmetry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6EJN-3YriRty4l2dJJSVN2pfEO3kOL2YXHsDNzGJmwRIh5S6rcyFWLPW-55yLshJFIRN2vThNnzf4QKhtIGd16_eAEK1-KfJoYDQYOkcDzABSrbOdfkbCh1EwRbQhDjBgUKTR-A1bdrNU-vOabU_H2-GcjeSmqHy49y6SndNdlE1e8aauhfzv-gIiq0CN</recordid><startdate>20220725</startdate><enddate>20220725</enddate><creator>Kögl, M</creator><creator>Soubelet, P</creator><creator>Brotons-Gisbert, M</creator><creator>Stier, A V</creator><creator>Gerardot, B D</creator><creator>Finley, J J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220725</creationdate><title>Moiré straintronics: a universal platform for reconfigurable quantum materials</title><author>Kögl, M ; Soubelet, P ; Brotons-Gisbert, M ; Stier, A V ; Gerardot, B D ; Finley, J J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26947098823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bilayers</topic><topic>Constituents</topic><topic>Critical point</topic><topic>Crystal lattices</topic><topic>Graphene</topic><topic>Moire patterns</topic><topic>Phase diagrams</topic><topic>Superlattices</topic><topic>Symmetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Kögl, M</creatorcontrib><creatorcontrib>Soubelet, P</creatorcontrib><creatorcontrib>Brotons-Gisbert, M</creatorcontrib><creatorcontrib>Stier, A V</creatorcontrib><creatorcontrib>Gerardot, B D</creatorcontrib><creatorcontrib>Finley, J J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kögl, M</au><au>Soubelet, P</au><au>Brotons-Gisbert, M</au><au>Stier, A V</au><au>Gerardot, B D</au><au>Finley, J J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Moiré straintronics: a universal platform for reconfigurable quantum materials</atitle><jtitle>arXiv.org</jtitle><date>2022-07-25</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Large scale two-dimensional (2D) moiré superlattices are driving a revolution in designer quantum materials. The electronic interactions in these superlattices, strongly dependent on the periodicity and symmetry of the moiré pattern, critically determine the emergent properties and phase diagrams. To date, the relative twist angle between two layers has been the primary tuning parameter for a given choice of constituent crystals. Here, we establish strain as a powerful mechanism to in-situ modify the moiré periodicity and symmetry. We develop an analytically exact mathematical description for the moiré lattice under arbitrary in-plane heterostrain acting on any bilayer structure. We demonstrate the ability to fine-tune the moiré lattice near critical points, such as the magic angle in bilayer graphene, or fully reconfigure the moiré lattice symmetry beyond that imposed by the unstrained constituent crystals. Due to this unprecedented simultaneous control over the strength of electronic interactions and lattice symmetry, 2D heterostrain provides a powerful platform to engineer, tune, and probe strongly correlated moiré materials.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2694709882
source ProQuest - Publicly Available Content Database
subjects Bilayers
Constituents
Critical point
Crystal lattices
Graphene
Moire patterns
Phase diagrams
Superlattices
Symmetry
title Moiré straintronics: a universal platform for reconfigurable quantum materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Moir%C3%A9%20straintronics:%20a%20universal%20platform%20for%20reconfigurable%20quantum%20materials&rft.jtitle=arXiv.org&rft.au=K%C3%B6gl,%20M&rft.date=2022-07-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2694709882%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26947098823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2694709882&rft_id=info:pmid/&rfr_iscdi=true