Loading…
Simulation in real conditions of navigation and obstacle avoidance with PX4/Gazebo platform
In the future, UAVs should be a part of the IoT ecosystems. Integration of sensors onboard allows to enrich information stored in the cloud and, at the same time, to improve the capacities of UAVs. Developing new sensors and the integration in UAV architecture could improve control functions. Design...
Saved in:
Published in: | Personal and ubiquitous computing 2022-08, Vol.26 (4), p.1171-1191 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-e533512fe831727759654d6d3f5f1098b49ccfe6fa9bd64b1d5d5804aab84b633 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-e533512fe831727759654d6d3f5f1098b49ccfe6fa9bd64b1d5d5804aab84b633 |
container_end_page | 1191 |
container_issue | 4 |
container_start_page | 1171 |
container_title | Personal and ubiquitous computing |
container_volume | 26 |
creator | García, Jesús Molina, Jose M. |
description | In the future, UAVs should be a part of the IoT ecosystems. Integration of sensors onboard allows to enrich information stored in the cloud and, at the same time, to improve the capacities of UAVs. Developing new sensors and the integration in UAV architecture could improve control functions. Design of future UAV systems requires from advanced tools to analyze the system components and their interaction in real operational conditions. In this work, authors present an approach to integrate and evaluate a LIDAR sensor and the capacity for improving navigation and obstacle avoidance functions in simulated situations using a real UAV platform. It uses available software for mission definition and execution in UAVs based on PixHawk flight controller and peripherals. The proposed solution (a general method that could be used to integrate other kind of sensors) shows physical integration of the main types of sensors in UAV domain both for navigation and collision avoidance, and at the same time the use of powerful simulation models developed with Gazebo. Some illustrative results show the performance of this navigation and obstacle avoidance function using the simulated sensors and the control of the real UAV in realistic conditions. |
doi_str_mv | 10.1007/s00779-019-01356-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2694780031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2694780031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e533512fe831727759654d6d3f5f1098b49ccfe6fa9bd64b1d5d5804aab84b633</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9dhk8pospWgrFBRUEFyEzCSpKdOkJtOK_nqnjujOxX1wOedc-AA4x-gSIyQmuW9CFgjvizBe0AMwwhyLgkosDn93JI_BSc4rhLDglI_Ay4Nfb1vd-RigDzBZ3cImBuP3lwyjg0Hv_HIQ6GBgrHOnm9ZCvYve6NBY-O67V3j_TCcz_WnrCDd9notpfQqOnG6zPfuZY_B0c_04nReLu9nt9GpRNATLrrCMEIZLZyuCRSkEk5xRww1xzGEkq5rKpnGWOy1rw2mNDTOsQlTruqI1J2QMLobcTYpvW5s7tYrbFPqXquSSigohgntVOaiaFHNO1qlN8mudPhRGag9RDRBVD1F9Q1S0N5HBlHtxWNr0F_2P6wvbj3Tt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694780031</pqid></control><display><type>article</type><title>Simulation in real conditions of navigation and obstacle avoidance with PX4/Gazebo platform</title><source>Springer Nature</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>García, Jesús ; Molina, Jose M.</creator><creatorcontrib>García, Jesús ; Molina, Jose M.</creatorcontrib><description>In the future, UAVs should be a part of the IoT ecosystems. Integration of sensors onboard allows to enrich information stored in the cloud and, at the same time, to improve the capacities of UAVs. Developing new sensors and the integration in UAV architecture could improve control functions. Design of future UAV systems requires from advanced tools to analyze the system components and their interaction in real operational conditions. In this work, authors present an approach to integrate and evaluate a LIDAR sensor and the capacity for improving navigation and obstacle avoidance functions in simulated situations using a real UAV platform. It uses available software for mission definition and execution in UAVs based on PixHawk flight controller and peripherals. The proposed solution (a general method that could be used to integrate other kind of sensors) shows physical integration of the main types of sensors in UAV domain both for navigation and collision avoidance, and at the same time the use of powerful simulation models developed with Gazebo. Some illustrative results show the performance of this navigation and obstacle avoidance function using the simulated sensors and the control of the real UAV in realistic conditions.</description><identifier>ISSN: 1617-4909</identifier><identifier>EISSN: 1617-4917</identifier><identifier>DOI: 10.1007/s00779-019-01356-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Collision avoidance ; Computer Science ; Flight control systems ; Mobile Computing ; Navigation ; Obstacle avoidance ; Original Article ; Personal Computing ; Sensors ; Simulation models ; Unmanned aerial vehicles ; User Interfaces and Human Computer Interaction</subject><ispartof>Personal and ubiquitous computing, 2022-08, Vol.26 (4), p.1171-1191</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e533512fe831727759654d6d3f5f1098b49ccfe6fa9bd64b1d5d5804aab84b633</citedby><cites>FETCH-LOGICAL-c319t-e533512fe831727759654d6d3f5f1098b49ccfe6fa9bd64b1d5d5804aab84b633</cites><orcidid>0000-0003-1768-2688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>García, Jesús</creatorcontrib><creatorcontrib>Molina, Jose M.</creatorcontrib><title>Simulation in real conditions of navigation and obstacle avoidance with PX4/Gazebo platform</title><title>Personal and ubiquitous computing</title><addtitle>Pers Ubiquit Comput</addtitle><description>In the future, UAVs should be a part of the IoT ecosystems. Integration of sensors onboard allows to enrich information stored in the cloud and, at the same time, to improve the capacities of UAVs. Developing new sensors and the integration in UAV architecture could improve control functions. Design of future UAV systems requires from advanced tools to analyze the system components and their interaction in real operational conditions. In this work, authors present an approach to integrate and evaluate a LIDAR sensor and the capacity for improving navigation and obstacle avoidance functions in simulated situations using a real UAV platform. It uses available software for mission definition and execution in UAVs based on PixHawk flight controller and peripherals. The proposed solution (a general method that could be used to integrate other kind of sensors) shows physical integration of the main types of sensors in UAV domain both for navigation and collision avoidance, and at the same time the use of powerful simulation models developed with Gazebo. Some illustrative results show the performance of this navigation and obstacle avoidance function using the simulated sensors and the control of the real UAV in realistic conditions.</description><subject>Collision avoidance</subject><subject>Computer Science</subject><subject>Flight control systems</subject><subject>Mobile Computing</subject><subject>Navigation</subject><subject>Obstacle avoidance</subject><subject>Original Article</subject><subject>Personal Computing</subject><subject>Sensors</subject><subject>Simulation models</subject><subject>Unmanned aerial vehicles</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>1617-4909</issn><issn>1617-4917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9dhk8pospWgrFBRUEFyEzCSpKdOkJtOK_nqnjujOxX1wOedc-AA4x-gSIyQmuW9CFgjvizBe0AMwwhyLgkosDn93JI_BSc4rhLDglI_Ay4Nfb1vd-RigDzBZ3cImBuP3lwyjg0Hv_HIQ6GBgrHOnm9ZCvYve6NBY-O67V3j_TCcz_WnrCDd9notpfQqOnG6zPfuZY_B0c_04nReLu9nt9GpRNATLrrCMEIZLZyuCRSkEk5xRww1xzGEkq5rKpnGWOy1rw2mNDTOsQlTruqI1J2QMLobcTYpvW5s7tYrbFPqXquSSigohgntVOaiaFHNO1qlN8mudPhRGag9RDRBVD1F9Q1S0N5HBlHtxWNr0F_2P6wvbj3Tt</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>García, Jesús</creator><creator>Molina, Jose M.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1768-2688</orcidid></search><sort><creationdate>20220801</creationdate><title>Simulation in real conditions of navigation and obstacle avoidance with PX4/Gazebo platform</title><author>García, Jesús ; Molina, Jose M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e533512fe831727759654d6d3f5f1098b49ccfe6fa9bd64b1d5d5804aab84b633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Collision avoidance</topic><topic>Computer Science</topic><topic>Flight control systems</topic><topic>Mobile Computing</topic><topic>Navigation</topic><topic>Obstacle avoidance</topic><topic>Original Article</topic><topic>Personal Computing</topic><topic>Sensors</topic><topic>Simulation models</topic><topic>Unmanned aerial vehicles</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García, Jesús</creatorcontrib><creatorcontrib>Molina, Jose M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Personal and ubiquitous computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García, Jesús</au><au>Molina, Jose M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation in real conditions of navigation and obstacle avoidance with PX4/Gazebo platform</atitle><jtitle>Personal and ubiquitous computing</jtitle><stitle>Pers Ubiquit Comput</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>26</volume><issue>4</issue><spage>1171</spage><epage>1191</epage><pages>1171-1191</pages><issn>1617-4909</issn><eissn>1617-4917</eissn><abstract>In the future, UAVs should be a part of the IoT ecosystems. Integration of sensors onboard allows to enrich information stored in the cloud and, at the same time, to improve the capacities of UAVs. Developing new sensors and the integration in UAV architecture could improve control functions. Design of future UAV systems requires from advanced tools to analyze the system components and their interaction in real operational conditions. In this work, authors present an approach to integrate and evaluate a LIDAR sensor and the capacity for improving navigation and obstacle avoidance functions in simulated situations using a real UAV platform. It uses available software for mission definition and execution in UAVs based on PixHawk flight controller and peripherals. The proposed solution (a general method that could be used to integrate other kind of sensors) shows physical integration of the main types of sensors in UAV domain both for navigation and collision avoidance, and at the same time the use of powerful simulation models developed with Gazebo. Some illustrative results show the performance of this navigation and obstacle avoidance function using the simulated sensors and the control of the real UAV in realistic conditions.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00779-019-01356-4</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1768-2688</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-4909 |
ispartof | Personal and ubiquitous computing, 2022-08, Vol.26 (4), p.1171-1191 |
issn | 1617-4909 1617-4917 |
language | eng |
recordid | cdi_proquest_journals_2694780031 |
source | Springer Nature; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
subjects | Collision avoidance Computer Science Flight control systems Mobile Computing Navigation Obstacle avoidance Original Article Personal Computing Sensors Simulation models Unmanned aerial vehicles User Interfaces and Human Computer Interaction |
title | Simulation in real conditions of navigation and obstacle avoidance with PX4/Gazebo platform |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20in%20real%20conditions%20of%20navigation%20and%20obstacle%20avoidance%20with%20PX4/Gazebo%20platform&rft.jtitle=Personal%20and%20ubiquitous%20computing&rft.au=Garc%C3%ADa,%20Jes%C3%BAs&rft.date=2022-08-01&rft.volume=26&rft.issue=4&rft.spage=1171&rft.epage=1191&rft.pages=1171-1191&rft.issn=1617-4909&rft.eissn=1617-4917&rft_id=info:doi/10.1007/s00779-019-01356-4&rft_dat=%3Cproquest_cross%3E2694780031%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e533512fe831727759654d6d3f5f1098b49ccfe6fa9bd64b1d5d5804aab84b633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2694780031&rft_id=info:pmid/&rfr_iscdi=true |