Loading…

Simulation in real conditions of navigation and obstacle avoidance with PX4/Gazebo platform

In the future, UAVs should be a part of the IoT ecosystems. Integration of sensors onboard allows to enrich information stored in the cloud and, at the same time, to improve the capacities of UAVs. Developing new sensors and the integration in UAV architecture could improve control functions. Design...

Full description

Saved in:
Bibliographic Details
Published in:Personal and ubiquitous computing 2022-08, Vol.26 (4), p.1171-1191
Main Authors: García, Jesús, Molina, Jose M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-e533512fe831727759654d6d3f5f1098b49ccfe6fa9bd64b1d5d5804aab84b633
cites cdi_FETCH-LOGICAL-c319t-e533512fe831727759654d6d3f5f1098b49ccfe6fa9bd64b1d5d5804aab84b633
container_end_page 1191
container_issue 4
container_start_page 1171
container_title Personal and ubiquitous computing
container_volume 26
creator García, Jesús
Molina, Jose M.
description In the future, UAVs should be a part of the IoT ecosystems. Integration of sensors onboard allows to enrich information stored in the cloud and, at the same time, to improve the capacities of UAVs. Developing new sensors and the integration in UAV architecture could improve control functions. Design of future UAV systems requires from advanced tools to analyze the system components and their interaction in real operational conditions. In this work, authors present an approach to integrate and evaluate a LIDAR sensor and the capacity for improving navigation and obstacle avoidance functions in simulated situations using a real UAV platform. It uses available software for mission definition and execution in UAVs based on PixHawk flight controller and peripherals. The proposed solution (a general method that could be used to integrate other kind of sensors) shows physical integration of the main types of sensors in UAV domain both for navigation and collision avoidance, and at the same time the use of powerful simulation models developed with Gazebo. Some illustrative results show the performance of this navigation and obstacle avoidance function using the simulated sensors and the control of the real UAV in realistic conditions.
doi_str_mv 10.1007/s00779-019-01356-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2694780031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2694780031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e533512fe831727759654d6d3f5f1098b49ccfe6fa9bd64b1d5d5804aab84b633</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9dhk8pospWgrFBRUEFyEzCSpKdOkJtOK_nqnjujOxX1wOedc-AA4x-gSIyQmuW9CFgjvizBe0AMwwhyLgkosDn93JI_BSc4rhLDglI_Ay4Nfb1vd-RigDzBZ3cImBuP3lwyjg0Hv_HIQ6GBgrHOnm9ZCvYve6NBY-O67V3j_TCcz_WnrCDd9notpfQqOnG6zPfuZY_B0c_04nReLu9nt9GpRNATLrrCMEIZLZyuCRSkEk5xRww1xzGEkq5rKpnGWOy1rw2mNDTOsQlTruqI1J2QMLobcTYpvW5s7tYrbFPqXquSSigohgntVOaiaFHNO1qlN8mudPhRGag9RDRBVD1F9Q1S0N5HBlHtxWNr0F_2P6wvbj3Tt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694780031</pqid></control><display><type>article</type><title>Simulation in real conditions of navigation and obstacle avoidance with PX4/Gazebo platform</title><source>Springer Nature</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>García, Jesús ; Molina, Jose M.</creator><creatorcontrib>García, Jesús ; Molina, Jose M.</creatorcontrib><description>In the future, UAVs should be a part of the IoT ecosystems. Integration of sensors onboard allows to enrich information stored in the cloud and, at the same time, to improve the capacities of UAVs. Developing new sensors and the integration in UAV architecture could improve control functions. Design of future UAV systems requires from advanced tools to analyze the system components and their interaction in real operational conditions. In this work, authors present an approach to integrate and evaluate a LIDAR sensor and the capacity for improving navigation and obstacle avoidance functions in simulated situations using a real UAV platform. It uses available software for mission definition and execution in UAVs based on PixHawk flight controller and peripherals. The proposed solution (a general method that could be used to integrate other kind of sensors) shows physical integration of the main types of sensors in UAV domain both for navigation and collision avoidance, and at the same time the use of powerful simulation models developed with Gazebo. Some illustrative results show the performance of this navigation and obstacle avoidance function using the simulated sensors and the control of the real UAV in realistic conditions.</description><identifier>ISSN: 1617-4909</identifier><identifier>EISSN: 1617-4917</identifier><identifier>DOI: 10.1007/s00779-019-01356-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Collision avoidance ; Computer Science ; Flight control systems ; Mobile Computing ; Navigation ; Obstacle avoidance ; Original Article ; Personal Computing ; Sensors ; Simulation models ; Unmanned aerial vehicles ; User Interfaces and Human Computer Interaction</subject><ispartof>Personal and ubiquitous computing, 2022-08, Vol.26 (4), p.1171-1191</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e533512fe831727759654d6d3f5f1098b49ccfe6fa9bd64b1d5d5804aab84b633</citedby><cites>FETCH-LOGICAL-c319t-e533512fe831727759654d6d3f5f1098b49ccfe6fa9bd64b1d5d5804aab84b633</cites><orcidid>0000-0003-1768-2688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>García, Jesús</creatorcontrib><creatorcontrib>Molina, Jose M.</creatorcontrib><title>Simulation in real conditions of navigation and obstacle avoidance with PX4/Gazebo platform</title><title>Personal and ubiquitous computing</title><addtitle>Pers Ubiquit Comput</addtitle><description>In the future, UAVs should be a part of the IoT ecosystems. Integration of sensors onboard allows to enrich information stored in the cloud and, at the same time, to improve the capacities of UAVs. Developing new sensors and the integration in UAV architecture could improve control functions. Design of future UAV systems requires from advanced tools to analyze the system components and their interaction in real operational conditions. In this work, authors present an approach to integrate and evaluate a LIDAR sensor and the capacity for improving navigation and obstacle avoidance functions in simulated situations using a real UAV platform. It uses available software for mission definition and execution in UAVs based on PixHawk flight controller and peripherals. The proposed solution (a general method that could be used to integrate other kind of sensors) shows physical integration of the main types of sensors in UAV domain both for navigation and collision avoidance, and at the same time the use of powerful simulation models developed with Gazebo. Some illustrative results show the performance of this navigation and obstacle avoidance function using the simulated sensors and the control of the real UAV in realistic conditions.</description><subject>Collision avoidance</subject><subject>Computer Science</subject><subject>Flight control systems</subject><subject>Mobile Computing</subject><subject>Navigation</subject><subject>Obstacle avoidance</subject><subject>Original Article</subject><subject>Personal Computing</subject><subject>Sensors</subject><subject>Simulation models</subject><subject>Unmanned aerial vehicles</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>1617-4909</issn><issn>1617-4917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9dhk8pospWgrFBRUEFyEzCSpKdOkJtOK_nqnjujOxX1wOedc-AA4x-gSIyQmuW9CFgjvizBe0AMwwhyLgkosDn93JI_BSc4rhLDglI_Ay4Nfb1vd-RigDzBZ3cImBuP3lwyjg0Hv_HIQ6GBgrHOnm9ZCvYve6NBY-O67V3j_TCcz_WnrCDd9notpfQqOnG6zPfuZY_B0c_04nReLu9nt9GpRNATLrrCMEIZLZyuCRSkEk5xRww1xzGEkq5rKpnGWOy1rw2mNDTOsQlTruqI1J2QMLobcTYpvW5s7tYrbFPqXquSSigohgntVOaiaFHNO1qlN8mudPhRGag9RDRBVD1F9Q1S0N5HBlHtxWNr0F_2P6wvbj3Tt</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>García, Jesús</creator><creator>Molina, Jose M.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1768-2688</orcidid></search><sort><creationdate>20220801</creationdate><title>Simulation in real conditions of navigation and obstacle avoidance with PX4/Gazebo platform</title><author>García, Jesús ; Molina, Jose M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e533512fe831727759654d6d3f5f1098b49ccfe6fa9bd64b1d5d5804aab84b633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Collision avoidance</topic><topic>Computer Science</topic><topic>Flight control systems</topic><topic>Mobile Computing</topic><topic>Navigation</topic><topic>Obstacle avoidance</topic><topic>Original Article</topic><topic>Personal Computing</topic><topic>Sensors</topic><topic>Simulation models</topic><topic>Unmanned aerial vehicles</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García, Jesús</creatorcontrib><creatorcontrib>Molina, Jose M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Personal and ubiquitous computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García, Jesús</au><au>Molina, Jose M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation in real conditions of navigation and obstacle avoidance with PX4/Gazebo platform</atitle><jtitle>Personal and ubiquitous computing</jtitle><stitle>Pers Ubiquit Comput</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>26</volume><issue>4</issue><spage>1171</spage><epage>1191</epage><pages>1171-1191</pages><issn>1617-4909</issn><eissn>1617-4917</eissn><abstract>In the future, UAVs should be a part of the IoT ecosystems. Integration of sensors onboard allows to enrich information stored in the cloud and, at the same time, to improve the capacities of UAVs. Developing new sensors and the integration in UAV architecture could improve control functions. Design of future UAV systems requires from advanced tools to analyze the system components and their interaction in real operational conditions. In this work, authors present an approach to integrate and evaluate a LIDAR sensor and the capacity for improving navigation and obstacle avoidance functions in simulated situations using a real UAV platform. It uses available software for mission definition and execution in UAVs based on PixHawk flight controller and peripherals. The proposed solution (a general method that could be used to integrate other kind of sensors) shows physical integration of the main types of sensors in UAV domain both for navigation and collision avoidance, and at the same time the use of powerful simulation models developed with Gazebo. Some illustrative results show the performance of this navigation and obstacle avoidance function using the simulated sensors and the control of the real UAV in realistic conditions.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00779-019-01356-4</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1768-2688</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1617-4909
ispartof Personal and ubiquitous computing, 2022-08, Vol.26 (4), p.1171-1191
issn 1617-4909
1617-4917
language eng
recordid cdi_proquest_journals_2694780031
source Springer Nature; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects Collision avoidance
Computer Science
Flight control systems
Mobile Computing
Navigation
Obstacle avoidance
Original Article
Personal Computing
Sensors
Simulation models
Unmanned aerial vehicles
User Interfaces and Human Computer Interaction
title Simulation in real conditions of navigation and obstacle avoidance with PX4/Gazebo platform
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20in%20real%20conditions%20of%20navigation%20and%20obstacle%20avoidance%20with%20PX4/Gazebo%20platform&rft.jtitle=Personal%20and%20ubiquitous%20computing&rft.au=Garc%C3%ADa,%20Jes%C3%BAs&rft.date=2022-08-01&rft.volume=26&rft.issue=4&rft.spage=1171&rft.epage=1191&rft.pages=1171-1191&rft.issn=1617-4909&rft.eissn=1617-4917&rft_id=info:doi/10.1007/s00779-019-01356-4&rft_dat=%3Cproquest_cross%3E2694780031%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e533512fe831727759654d6d3f5f1098b49ccfe6fa9bd64b1d5d5804aab84b633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2694780031&rft_id=info:pmid/&rfr_iscdi=true