Loading…

Direct Prediction of Fluid‐Fluid Displacement Efficiency in Ordered Porous Media Using the Pore Structure

Fluid‐fluid displacement in porous media is common in many natural and engineering settings. Extensive studies investigated the transition of displacement patterns, but the direct prediction of the displacement efficiency using the pore structure is lacking. Here, we propose a method to directly pre...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research 2022-07, Vol.58 (7), p.n/a
Main Authors: Lan, Tian, Hu, Ran, Guo, Wei, Wei, Guan‐Ju, Chen, Yi‐Feng, Zhou, Chuang‐Bing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a3308-1afe1729f1e4220547d36f4ca6aae1be350129704fc17b54cca18ccb7c50b6d53
cites cdi_FETCH-LOGICAL-a3308-1afe1729f1e4220547d36f4ca6aae1be350129704fc17b54cca18ccb7c50b6d53
container_end_page n/a
container_issue 7
container_start_page
container_title Water resources research
container_volume 58
creator Lan, Tian
Hu, Ran
Guo, Wei
Wei, Guan‐Ju
Chen, Yi‐Feng
Zhou, Chuang‐Bing
description Fluid‐fluid displacement in porous media is common in many natural and engineering settings. Extensive studies investigated the transition of displacement patterns, but the direct prediction of the displacement efficiency using the pore structure is lacking. Here, we propose a method to directly predict the displacement efficiency with no need to solve the Navier‐Stokes and the Hagen‐Poiseuille equations in ordered porous media. The predictive method origins from the pore‐scale filling events, which can be divided into two directions such as the bulk flow direction and the transverse direction. The pore‐filling event (burst) dominates the fluid invasion for the bulk flow direction, and the invading phase forms a thin fingering channel. For the transverse direction, we introduce three invasion modes (compact, taper, and widen) to quantify fluid invasion. We can predict the finger width in each column, and the displacement efficiency can be predicted through the weighted average of the predicted finger width. We evaluate the predictive method using microfluidic experiments and pore‐network simulations, confirming that the predictive method can reasonably predict the displacement efficiency in ordered porous media. Our method can also be applicable for disorder porous media when the disorder is smaller than a critical value. The predictive method can directly predict fluid invasion according to pore structure, thus greatly improving the computational efficiency and is of significance in multiphase flow control. Key Points We introduce three invasion modes to quantify the invasion in the transverse direction in ordered pores media We propose a predictive method to directly predict the displacement efficiency in ordered porous media using the pore structure The predicted displacement efficiency exhibits good agreement with the microfluidic experiments and pore‐network simulations
doi_str_mv 10.1029/2021WR031875
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2695103832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2695103832</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3308-1afe1729f1e4220547d36f4ca6aae1be350129704fc17b54cca18ccb7c50b6d53</originalsourceid><addsrcrecordid>eNp9kM1Kw0AcxBdRsFZvPsCCV6P7mU2O0g8VKi3V0mPYbP6rW9Ok7iZIbz6Cz-iTmFoPnjwNDL-ZgUHonJIrSlh6zQijyznhNFHyAPVoKkSkUsUPUY8QwSPKU3WMTkJYEUKFjFUPvQ6dB9PgmYfCmcbVFa4tHpetK74-Pn8UD13YlNrAGqoGj6x1xkFltthVeOoL6JJ4Vvu6DfihK9F4EVz1jJsX2NmAHxvfmqb1cIqOrC4DnP1qHy3Go6fBXTSZ3t4PbiaR5pwkEdUWqGKppSAYI1KogsdWGB1rDTQHLgllqSLCGqpyKYzRNDEmV0aSPC4k76OLfe_G128thCZb1a2vusmMxamkhCecddTlnjK-DsGDzTberbXfZpRkuzuzv3d2ON_j766E7b9stpwP5iwmScK_AXLgd7c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695103832</pqid></control><display><type>article</type><title>Direct Prediction of Fluid‐Fluid Displacement Efficiency in Ordered Porous Media Using the Pore Structure</title><source>Wiley-Blackwell AGU Digital Library</source><creator>Lan, Tian ; Hu, Ran ; Guo, Wei ; Wei, Guan‐Ju ; Chen, Yi‐Feng ; Zhou, Chuang‐Bing</creator><creatorcontrib>Lan, Tian ; Hu, Ran ; Guo, Wei ; Wei, Guan‐Ju ; Chen, Yi‐Feng ; Zhou, Chuang‐Bing</creatorcontrib><description>Fluid‐fluid displacement in porous media is common in many natural and engineering settings. Extensive studies investigated the transition of displacement patterns, but the direct prediction of the displacement efficiency using the pore structure is lacking. Here, we propose a method to directly predict the displacement efficiency with no need to solve the Navier‐Stokes and the Hagen‐Poiseuille equations in ordered porous media. The predictive method origins from the pore‐scale filling events, which can be divided into two directions such as the bulk flow direction and the transverse direction. The pore‐filling event (burst) dominates the fluid invasion for the bulk flow direction, and the invading phase forms a thin fingering channel. For the transverse direction, we introduce three invasion modes (compact, taper, and widen) to quantify fluid invasion. We can predict the finger width in each column, and the displacement efficiency can be predicted through the weighted average of the predicted finger width. We evaluate the predictive method using microfluidic experiments and pore‐network simulations, confirming that the predictive method can reasonably predict the displacement efficiency in ordered porous media. Our method can also be applicable for disorder porous media when the disorder is smaller than a critical value. The predictive method can directly predict fluid invasion according to pore structure, thus greatly improving the computational efficiency and is of significance in multiphase flow control. Key Points We introduce three invasion modes to quantify the invasion in the transverse direction in ordered pores media We propose a predictive method to directly predict the displacement efficiency in ordered porous media using the pore structure The predicted displacement efficiency exhibits good agreement with the microfluidic experiments and pore‐network simulations</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2021WR031875</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Computer applications ; Direction ; Displacement ; displacement efficiency ; Efficiency ; finger width ; Flow control ; immiscible displacement ; Media ; Methods ; Microfluidics ; Multiphase flow ; ordered porous media ; pore structure ; Porous media ; Width</subject><ispartof>Water resources research, 2022-07, Vol.58 (7), p.n/a</ispartof><rights>2022. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3308-1afe1729f1e4220547d36f4ca6aae1be350129704fc17b54cca18ccb7c50b6d53</citedby><cites>FETCH-LOGICAL-a3308-1afe1729f1e4220547d36f4ca6aae1be350129704fc17b54cca18ccb7c50b6d53</cites><orcidid>0000-0002-2670-6074 ; 0000-0001-9104-4401 ; 0000-0003-2328-7035 ; 0000-0002-9690-1377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021WR031875$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021WR031875$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,11495,27905,27906,46449,46873</link.rule.ids></links><search><creatorcontrib>Lan, Tian</creatorcontrib><creatorcontrib>Hu, Ran</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Wei, Guan‐Ju</creatorcontrib><creatorcontrib>Chen, Yi‐Feng</creatorcontrib><creatorcontrib>Zhou, Chuang‐Bing</creatorcontrib><title>Direct Prediction of Fluid‐Fluid Displacement Efficiency in Ordered Porous Media Using the Pore Structure</title><title>Water resources research</title><description>Fluid‐fluid displacement in porous media is common in many natural and engineering settings. Extensive studies investigated the transition of displacement patterns, but the direct prediction of the displacement efficiency using the pore structure is lacking. Here, we propose a method to directly predict the displacement efficiency with no need to solve the Navier‐Stokes and the Hagen‐Poiseuille equations in ordered porous media. The predictive method origins from the pore‐scale filling events, which can be divided into two directions such as the bulk flow direction and the transverse direction. The pore‐filling event (burst) dominates the fluid invasion for the bulk flow direction, and the invading phase forms a thin fingering channel. For the transverse direction, we introduce three invasion modes (compact, taper, and widen) to quantify fluid invasion. We can predict the finger width in each column, and the displacement efficiency can be predicted through the weighted average of the predicted finger width. We evaluate the predictive method using microfluidic experiments and pore‐network simulations, confirming that the predictive method can reasonably predict the displacement efficiency in ordered porous media. Our method can also be applicable for disorder porous media when the disorder is smaller than a critical value. The predictive method can directly predict fluid invasion according to pore structure, thus greatly improving the computational efficiency and is of significance in multiphase flow control. Key Points We introduce three invasion modes to quantify the invasion in the transverse direction in ordered pores media We propose a predictive method to directly predict the displacement efficiency in ordered porous media using the pore structure The predicted displacement efficiency exhibits good agreement with the microfluidic experiments and pore‐network simulations</description><subject>Computer applications</subject><subject>Direction</subject><subject>Displacement</subject><subject>displacement efficiency</subject><subject>Efficiency</subject><subject>finger width</subject><subject>Flow control</subject><subject>immiscible displacement</subject><subject>Media</subject><subject>Methods</subject><subject>Microfluidics</subject><subject>Multiphase flow</subject><subject>ordered porous media</subject><subject>pore structure</subject><subject>Porous media</subject><subject>Width</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AcxBdRsFZvPsCCV6P7mU2O0g8VKi3V0mPYbP6rW9Ok7iZIbz6Cz-iTmFoPnjwNDL-ZgUHonJIrSlh6zQijyznhNFHyAPVoKkSkUsUPUY8QwSPKU3WMTkJYEUKFjFUPvQ6dB9PgmYfCmcbVFa4tHpetK74-Pn8UD13YlNrAGqoGj6x1xkFltthVeOoL6JJ4Vvu6DfihK9F4EVz1jJsX2NmAHxvfmqb1cIqOrC4DnP1qHy3Go6fBXTSZ3t4PbiaR5pwkEdUWqGKppSAYI1KogsdWGB1rDTQHLgllqSLCGqpyKYzRNDEmV0aSPC4k76OLfe_G128thCZb1a2vusmMxamkhCecddTlnjK-DsGDzTberbXfZpRkuzuzv3d2ON_j766E7b9stpwP5iwmScK_AXLgd7c</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Lan, Tian</creator><creator>Hu, Ran</creator><creator>Guo, Wei</creator><creator>Wei, Guan‐Ju</creator><creator>Chen, Yi‐Feng</creator><creator>Zhou, Chuang‐Bing</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-2670-6074</orcidid><orcidid>https://orcid.org/0000-0001-9104-4401</orcidid><orcidid>https://orcid.org/0000-0003-2328-7035</orcidid><orcidid>https://orcid.org/0000-0002-9690-1377</orcidid></search><sort><creationdate>202207</creationdate><title>Direct Prediction of Fluid‐Fluid Displacement Efficiency in Ordered Porous Media Using the Pore Structure</title><author>Lan, Tian ; Hu, Ran ; Guo, Wei ; Wei, Guan‐Ju ; Chen, Yi‐Feng ; Zhou, Chuang‐Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3308-1afe1729f1e4220547d36f4ca6aae1be350129704fc17b54cca18ccb7c50b6d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer applications</topic><topic>Direction</topic><topic>Displacement</topic><topic>displacement efficiency</topic><topic>Efficiency</topic><topic>finger width</topic><topic>Flow control</topic><topic>immiscible displacement</topic><topic>Media</topic><topic>Methods</topic><topic>Microfluidics</topic><topic>Multiphase flow</topic><topic>ordered porous media</topic><topic>pore structure</topic><topic>Porous media</topic><topic>Width</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lan, Tian</creatorcontrib><creatorcontrib>Hu, Ran</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Wei, Guan‐Ju</creatorcontrib><creatorcontrib>Chen, Yi‐Feng</creatorcontrib><creatorcontrib>Zhou, Chuang‐Bing</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lan, Tian</au><au>Hu, Ran</au><au>Guo, Wei</au><au>Wei, Guan‐Ju</au><au>Chen, Yi‐Feng</au><au>Zhou, Chuang‐Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Prediction of Fluid‐Fluid Displacement Efficiency in Ordered Porous Media Using the Pore Structure</atitle><jtitle>Water resources research</jtitle><date>2022-07</date><risdate>2022</risdate><volume>58</volume><issue>7</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Fluid‐fluid displacement in porous media is common in many natural and engineering settings. Extensive studies investigated the transition of displacement patterns, but the direct prediction of the displacement efficiency using the pore structure is lacking. Here, we propose a method to directly predict the displacement efficiency with no need to solve the Navier‐Stokes and the Hagen‐Poiseuille equations in ordered porous media. The predictive method origins from the pore‐scale filling events, which can be divided into two directions such as the bulk flow direction and the transverse direction. The pore‐filling event (burst) dominates the fluid invasion for the bulk flow direction, and the invading phase forms a thin fingering channel. For the transverse direction, we introduce three invasion modes (compact, taper, and widen) to quantify fluid invasion. We can predict the finger width in each column, and the displacement efficiency can be predicted through the weighted average of the predicted finger width. We evaluate the predictive method using microfluidic experiments and pore‐network simulations, confirming that the predictive method can reasonably predict the displacement efficiency in ordered porous media. Our method can also be applicable for disorder porous media when the disorder is smaller than a critical value. The predictive method can directly predict fluid invasion according to pore structure, thus greatly improving the computational efficiency and is of significance in multiphase flow control. Key Points We introduce three invasion modes to quantify the invasion in the transverse direction in ordered pores media We propose a predictive method to directly predict the displacement efficiency in ordered porous media using the pore structure The predicted displacement efficiency exhibits good agreement with the microfluidic experiments and pore‐network simulations</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2021WR031875</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-2670-6074</orcidid><orcidid>https://orcid.org/0000-0001-9104-4401</orcidid><orcidid>https://orcid.org/0000-0003-2328-7035</orcidid><orcidid>https://orcid.org/0000-0002-9690-1377</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2022-07, Vol.58 (7), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_journals_2695103832
source Wiley-Blackwell AGU Digital Library
subjects Computer applications
Direction
Displacement
displacement efficiency
Efficiency
finger width
Flow control
immiscible displacement
Media
Methods
Microfluidics
Multiphase flow
ordered porous media
pore structure
Porous media
Width
title Direct Prediction of Fluid‐Fluid Displacement Efficiency in Ordered Porous Media Using the Pore Structure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A45%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Prediction%20of%20Fluid%E2%80%90Fluid%20Displacement%20Efficiency%20in%20Ordered%20Porous%20Media%20Using%20the%20Pore%20Structure&rft.jtitle=Water%20resources%20research&rft.au=Lan,%20Tian&rft.date=2022-07&rft.volume=58&rft.issue=7&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2021WR031875&rft_dat=%3Cproquest_cross%3E2695103832%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3308-1afe1729f1e4220547d36f4ca6aae1be350129704fc17b54cca18ccb7c50b6d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2695103832&rft_id=info:pmid/&rfr_iscdi=true