Loading…
Distributed Gradient Flow: Nonsmoothness, Nonconvexity, and Saddle Point Evasion
The article considers distributed gradient flow (DGF) for multiagent nonconvex optimization. DGF is a continuous-time approximation of distributed gradient descent that is often easier to study than its discrete-time counterpart. The article has two main contributions. First, the article considers o...
Saved in:
Published in: | IEEE transactions on automatic control 2022-08, Vol.67 (8), p.3949-3964 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-95b0aa6f34e87f46a99b298361977369a8115ed912eff912ef207e92fd5446d83 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-95b0aa6f34e87f46a99b298361977369a8115ed912eff912ef207e92fd5446d83 |
container_end_page | 3964 |
container_issue | 8 |
container_start_page | 3949 |
container_title | IEEE transactions on automatic control |
container_volume | 67 |
creator | Swenson, Brian Murray, Ryan Poor, H. Vincent Kar, Soummya |
description | The article considers distributed gradient flow (DGF) for multiagent nonconvex optimization. DGF is a continuous-time approximation of distributed gradient descent that is often easier to study than its discrete-time counterpart. The article has two main contributions. First, the article considers optimization of nonsmooth, nonconvex objective functions. It is shown that DGF converges to critical points in this setting. The article then considers the problem of avoiding saddle points. It is shown that if agents' objective functions are assumed to be smooth and nonconvex, then DGF can only converge to a saddle point from a zero-measure set of initial conditions. To establish this result, the article proves a stable manifold theorem for DGF, which is a fundamental contribution of independent interest. In a companion article, analogous results are derived for discrete-time algorithms. |
doi_str_mv | 10.1109/TAC.2021.3111853 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2695157739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9535220</ieee_id><sourcerecordid>2695157739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-95b0aa6f34e87f46a99b298361977369a8115ed912eff912ef207e92fd5446d83</originalsourceid><addsrcrecordid>eNo9kEFPAjEUhBujiYjeTbxs4pXFvnZbWm8EAU2IkojnptC3sQS22C4o_95FiJc3mWRmXvIRcgu0C0D1w6w_6DLKoMsBQAl-RloghMqZYPyctCgFlWum5CW5SmnZWFkU0CLTJ5_q6OfbGl02jtZ5rOpstArfj9lrqNI6hPqzwpQ6B7sI1Q5_fL3vZLZy2bt1boXZNPimM9zZ5EN1TS5Ku0p4c9I2-RgNZ4PnfPI2fhn0J_mCaahzLebUWlnyAlWvLKTVes604hJ0r8eltgpAoNPAsCz_LqM91Kx0oiikU7xN7o-7mxi-tphqswzbWDUvDZNagGhmdJOix9QihpQilmYT_drGvQFqDtxMw80cuJkTt6Zyd6x4RPyPa8EFY5T_AsdGaAM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695157739</pqid></control><display><type>article</type><title>Distributed Gradient Flow: Nonsmoothness, Nonconvexity, and Saddle Point Evasion</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Swenson, Brian ; Murray, Ryan ; Poor, H. Vincent ; Kar, Soummya</creator><creatorcontrib>Swenson, Brian ; Murray, Ryan ; Poor, H. Vincent ; Kar, Soummya</creatorcontrib><description>The article considers distributed gradient flow (DGF) for multiagent nonconvex optimization. DGF is a continuous-time approximation of distributed gradient descent that is often easier to study than its discrete-time counterpart. The article has two main contributions. First, the article considers optimization of nonsmooth, nonconvex objective functions. It is shown that DGF converges to critical points in this setting. The article then considers the problem of avoiding saddle points. It is shown that if agents' objective functions are assumed to be smooth and nonconvex, then DGF can only converge to a saddle point from a zero-measure set of initial conditions. To establish this result, the article proves a stable manifold theorem for DGF, which is a fundamental contribution of independent interest. In a companion article, analogous results are derived for discrete-time algorithms.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2021.3111853</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Convergence ; Critical point ; Distributed optimization ; gradient descent ; Gradient flow ; Heuristic algorithms ; Initial conditions ; Linear programming ; Manifolds ; Multiagent systems ; nonconvex optimization ; nonsmooth optimization ; Optimization ; saddle point ; Saddle points ; stable manifold ; Trajectory</subject><ispartof>IEEE transactions on automatic control, 2022-08, Vol.67 (8), p.3949-3964</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-95b0aa6f34e87f46a99b298361977369a8115ed912eff912ef207e92fd5446d83</citedby><cites>FETCH-LOGICAL-c291t-95b0aa6f34e87f46a99b298361977369a8115ed912eff912ef207e92fd5446d83</cites><orcidid>0000-0002-2062-131X ; 0000-0002-1710-5584 ; 0000-0002-4491-4096 ; 0000-0002-8060-5581</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9535220$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Swenson, Brian</creatorcontrib><creatorcontrib>Murray, Ryan</creatorcontrib><creatorcontrib>Poor, H. Vincent</creatorcontrib><creatorcontrib>Kar, Soummya</creatorcontrib><title>Distributed Gradient Flow: Nonsmoothness, Nonconvexity, and Saddle Point Evasion</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The article considers distributed gradient flow (DGF) for multiagent nonconvex optimization. DGF is a continuous-time approximation of distributed gradient descent that is often easier to study than its discrete-time counterpart. The article has two main contributions. First, the article considers optimization of nonsmooth, nonconvex objective functions. It is shown that DGF converges to critical points in this setting. The article then considers the problem of avoiding saddle points. It is shown that if agents' objective functions are assumed to be smooth and nonconvex, then DGF can only converge to a saddle point from a zero-measure set of initial conditions. To establish this result, the article proves a stable manifold theorem for DGF, which is a fundamental contribution of independent interest. In a companion article, analogous results are derived for discrete-time algorithms.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Critical point</subject><subject>Distributed optimization</subject><subject>gradient descent</subject><subject>Gradient flow</subject><subject>Heuristic algorithms</subject><subject>Initial conditions</subject><subject>Linear programming</subject><subject>Manifolds</subject><subject>Multiagent systems</subject><subject>nonconvex optimization</subject><subject>nonsmooth optimization</subject><subject>Optimization</subject><subject>saddle point</subject><subject>Saddle points</subject><subject>stable manifold</subject><subject>Trajectory</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPAjEUhBujiYjeTbxs4pXFvnZbWm8EAU2IkojnptC3sQS22C4o_95FiJc3mWRmXvIRcgu0C0D1w6w_6DLKoMsBQAl-RloghMqZYPyctCgFlWum5CW5SmnZWFkU0CLTJ5_q6OfbGl02jtZ5rOpstArfj9lrqNI6hPqzwpQ6B7sI1Q5_fL3vZLZy2bt1boXZNPimM9zZ5EN1TS5Ku0p4c9I2-RgNZ4PnfPI2fhn0J_mCaahzLebUWlnyAlWvLKTVes604hJ0r8eltgpAoNPAsCz_LqM91Kx0oiikU7xN7o-7mxi-tphqswzbWDUvDZNagGhmdJOix9QihpQilmYT_drGvQFqDtxMw80cuJkTt6Zyd6x4RPyPa8EFY5T_AsdGaAM</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Swenson, Brian</creator><creator>Murray, Ryan</creator><creator>Poor, H. Vincent</creator><creator>Kar, Soummya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2062-131X</orcidid><orcidid>https://orcid.org/0000-0002-1710-5584</orcidid><orcidid>https://orcid.org/0000-0002-4491-4096</orcidid><orcidid>https://orcid.org/0000-0002-8060-5581</orcidid></search><sort><creationdate>20220801</creationdate><title>Distributed Gradient Flow: Nonsmoothness, Nonconvexity, and Saddle Point Evasion</title><author>Swenson, Brian ; Murray, Ryan ; Poor, H. Vincent ; Kar, Soummya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-95b0aa6f34e87f46a99b298361977369a8115ed912eff912ef207e92fd5446d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Critical point</topic><topic>Distributed optimization</topic><topic>gradient descent</topic><topic>Gradient flow</topic><topic>Heuristic algorithms</topic><topic>Initial conditions</topic><topic>Linear programming</topic><topic>Manifolds</topic><topic>Multiagent systems</topic><topic>nonconvex optimization</topic><topic>nonsmooth optimization</topic><topic>Optimization</topic><topic>saddle point</topic><topic>Saddle points</topic><topic>stable manifold</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swenson, Brian</creatorcontrib><creatorcontrib>Murray, Ryan</creatorcontrib><creatorcontrib>Poor, H. Vincent</creatorcontrib><creatorcontrib>Kar, Soummya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swenson, Brian</au><au>Murray, Ryan</au><au>Poor, H. Vincent</au><au>Kar, Soummya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Gradient Flow: Nonsmoothness, Nonconvexity, and Saddle Point Evasion</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>67</volume><issue>8</issue><spage>3949</spage><epage>3964</epage><pages>3949-3964</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The article considers distributed gradient flow (DGF) for multiagent nonconvex optimization. DGF is a continuous-time approximation of distributed gradient descent that is often easier to study than its discrete-time counterpart. The article has two main contributions. First, the article considers optimization of nonsmooth, nonconvex objective functions. It is shown that DGF converges to critical points in this setting. The article then considers the problem of avoiding saddle points. It is shown that if agents' objective functions are assumed to be smooth and nonconvex, then DGF can only converge to a saddle point from a zero-measure set of initial conditions. To establish this result, the article proves a stable manifold theorem for DGF, which is a fundamental contribution of independent interest. In a companion article, analogous results are derived for discrete-time algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2021.3111853</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2062-131X</orcidid><orcidid>https://orcid.org/0000-0002-1710-5584</orcidid><orcidid>https://orcid.org/0000-0002-4491-4096</orcidid><orcidid>https://orcid.org/0000-0002-8060-5581</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2022-08, Vol.67 (8), p.3949-3964 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_2695157739 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Convergence Critical point Distributed optimization gradient descent Gradient flow Heuristic algorithms Initial conditions Linear programming Manifolds Multiagent systems nonconvex optimization nonsmooth optimization Optimization saddle point Saddle points stable manifold Trajectory |
title | Distributed Gradient Flow: Nonsmoothness, Nonconvexity, and Saddle Point Evasion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A54%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Gradient%20Flow:%20Nonsmoothness,%20Nonconvexity,%20and%20Saddle%20Point%20Evasion&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Swenson,%20Brian&rft.date=2022-08-01&rft.volume=67&rft.issue=8&rft.spage=3949&rft.epage=3964&rft.pages=3949-3964&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2021.3111853&rft_dat=%3Cproquest_ieee_%3E2695157739%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-95b0aa6f34e87f46a99b298361977369a8115ed912eff912ef207e92fd5446d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2695157739&rft_id=info:pmid/&rft_ieee_id=9535220&rfr_iscdi=true |