Loading…

A Second Order Primal-Dual Method for Nonsmooth Convex Composite Optimization

We develop a second order primal-dual method for optimization problems in which the objective function is given by the sum of a strongly convex twice differentiable term and a possibly nondifferentiable convex regularizer. After introducing an auxiliary variable, we utilize the proximal operator of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2022-08, Vol.67 (8), p.4061-4076
Main Authors: Dhingra, Neil K., Khong, Sei Zhen, Jovanovic, Mihailo R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-87015c03ed09009b1a571122c0668d56cf3342681f5a9c2320a3ed81987907bb3
cites cdi_FETCH-LOGICAL-c291t-87015c03ed09009b1a571122c0668d56cf3342681f5a9c2320a3ed81987907bb3
container_end_page 4076
container_issue 8
container_start_page 4061
container_title IEEE transactions on automatic control
container_volume 67
creator Dhingra, Neil K.
Khong, Sei Zhen
Jovanovic, Mihailo R.
description We develop a second order primal-dual method for optimization problems in which the objective function is given by the sum of a strongly convex twice differentiable term and a possibly nondifferentiable convex regularizer. After introducing an auxiliary variable, we utilize the proximal operator of the nonsmooth regularizer to transform the associated augmented Lagrangian into a function that is once, but not twice, continuously differentiable. The saddle point of this function corresponds to the solution of the original optimization problem. We employ a generalization of the Hessian to define second-order updates on this function and prove global exponential stability of the corresponding differential inclusion. Furthermore, we develop a globally convergent customized algorithm that utilizes the primal-dual augmented Lagrangian as a merit function. We show that the search direction can be computed efficiently and prove quadratic/superlinear asymptotic convergence. We use the \ell _1-regularized model predictive control problem and the problem of designing a distributed controller for a spatially invariant system to demonstrate the merits and the effectiveness of our method.
doi_str_mv 10.1109/TAC.2021.3115449
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2695157838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9547812</ieee_id><sourcerecordid>2695157838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-87015c03ed09009b1a571122c0668d56cf3342681f5a9c2320a3ed81987907bb3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKf3gjcBrzvPSZo0uRz1EzYnOK9D1qasY21q0on66-3Y8OrlwPOew3kIuUaYIIK-W07zCQOGE44o0lSfkBEKoRImGD8lIwBUiWZKnpOLGDfDKNMUR2Q-pe-u8G1JF6F0gb6FurHb5H5nt3Tu-rUvaeUDffVtbLzv1zT37Zf7HqLpfKx7RxddXzf1r-1r316Ss8puo7s65ph8PD4s8-dktnh6yaezpGAa-0RlgKIA7krQAHqFVmSIjBUgpSqFLCrOUyYVVsLqgnEGdmAVapVpyFYrPia3h71d8J87F3uz8bvQDicNk1qgyBRXAwUHqgg-xuAq0-2_Cz8GweylmUGa2UszR2lD5eZQqZ1z_7gWaaaQ8T9cK2Xn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695157838</pqid></control><display><type>article</type><title>A Second Order Primal-Dual Method for Nonsmooth Convex Composite Optimization</title><source>IEEE Xplore (Online service)</source><creator>Dhingra, Neil K. ; Khong, Sei Zhen ; Jovanovic, Mihailo R.</creator><creatorcontrib>Dhingra, Neil K. ; Khong, Sei Zhen ; Jovanovic, Mihailo R.</creatorcontrib><description>We develop a second order primal-dual method for optimization problems in which the objective function is given by the sum of a strongly convex twice differentiable term and a possibly nondifferentiable convex regularizer. After introducing an auxiliary variable, we utilize the proximal operator of the nonsmooth regularizer to transform the associated augmented Lagrangian into a function that is once, but not twice, continuously differentiable. The saddle point of this function corresponds to the solution of the original optimization problem. We employ a generalization of the Hessian to define second-order updates on this function and prove global exponential stability of the corresponding differential inclusion. Furthermore, we develop a globally convergent customized algorithm that utilizes the primal-dual augmented Lagrangian as a merit function. We show that the search direction can be computed efficiently and prove quadratic/superlinear asymptotic convergence. We use the &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\ell _1&lt;/tex-math&gt;&lt;/inline-formula&gt;-regularized model predictive control problem and the problem of designing a distributed controller for a spatially invariant system to demonstrate the merits and the effectiveness of our method.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2021.3115449</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Control design ; control system synthesis ; Control systems design ; Convergence ; design optimization ; distributed algorithms ; gradient methods ; Jacobian matrices ; Linear programming ; Newton method ; Operators (mathematics) ; Optimization ; optimization methods ; Predictive control ; Saddle points ; Search problems</subject><ispartof>IEEE transactions on automatic control, 2022-08, Vol.67 (8), p.4061-4076</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-87015c03ed09009b1a571122c0668d56cf3342681f5a9c2320a3ed81987907bb3</citedby><cites>FETCH-LOGICAL-c291t-87015c03ed09009b1a571122c0668d56cf3342681f5a9c2320a3ed81987907bb3</cites><orcidid>0000-0003-4735-5872 ; 0000-0001-8995-9135 ; 0000-0002-4181-2924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9547812$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Dhingra, Neil K.</creatorcontrib><creatorcontrib>Khong, Sei Zhen</creatorcontrib><creatorcontrib>Jovanovic, Mihailo R.</creatorcontrib><title>A Second Order Primal-Dual Method for Nonsmooth Convex Composite Optimization</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We develop a second order primal-dual method for optimization problems in which the objective function is given by the sum of a strongly convex twice differentiable term and a possibly nondifferentiable convex regularizer. After introducing an auxiliary variable, we utilize the proximal operator of the nonsmooth regularizer to transform the associated augmented Lagrangian into a function that is once, but not twice, continuously differentiable. The saddle point of this function corresponds to the solution of the original optimization problem. We employ a generalization of the Hessian to define second-order updates on this function and prove global exponential stability of the corresponding differential inclusion. Furthermore, we develop a globally convergent customized algorithm that utilizes the primal-dual augmented Lagrangian as a merit function. We show that the search direction can be computed efficiently and prove quadratic/superlinear asymptotic convergence. We use the &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\ell _1&lt;/tex-math&gt;&lt;/inline-formula&gt;-regularized model predictive control problem and the problem of designing a distributed controller for a spatially invariant system to demonstrate the merits and the effectiveness of our method.</description><subject>Algorithms</subject><subject>Control design</subject><subject>control system synthesis</subject><subject>Control systems design</subject><subject>Convergence</subject><subject>design optimization</subject><subject>distributed algorithms</subject><subject>gradient methods</subject><subject>Jacobian matrices</subject><subject>Linear programming</subject><subject>Newton method</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>optimization methods</subject><subject>Predictive control</subject><subject>Saddle points</subject><subject>Search problems</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKf3gjcBrzvPSZo0uRz1EzYnOK9D1qasY21q0on66-3Y8OrlwPOew3kIuUaYIIK-W07zCQOGE44o0lSfkBEKoRImGD8lIwBUiWZKnpOLGDfDKNMUR2Q-pe-u8G1JF6F0gb6FurHb5H5nt3Tu-rUvaeUDffVtbLzv1zT37Zf7HqLpfKx7RxddXzf1r-1r316Ss8puo7s65ph8PD4s8-dktnh6yaezpGAa-0RlgKIA7krQAHqFVmSIjBUgpSqFLCrOUyYVVsLqgnEGdmAVapVpyFYrPia3h71d8J87F3uz8bvQDicNk1qgyBRXAwUHqgg-xuAq0-2_Cz8GweylmUGa2UszR2lD5eZQqZ1z_7gWaaaQ8T9cK2Xn</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Dhingra, Neil K.</creator><creator>Khong, Sei Zhen</creator><creator>Jovanovic, Mihailo R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4735-5872</orcidid><orcidid>https://orcid.org/0000-0001-8995-9135</orcidid><orcidid>https://orcid.org/0000-0002-4181-2924</orcidid></search><sort><creationdate>20220801</creationdate><title>A Second Order Primal-Dual Method for Nonsmooth Convex Composite Optimization</title><author>Dhingra, Neil K. ; Khong, Sei Zhen ; Jovanovic, Mihailo R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-87015c03ed09009b1a571122c0668d56cf3342681f5a9c2320a3ed81987907bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Control design</topic><topic>control system synthesis</topic><topic>Control systems design</topic><topic>Convergence</topic><topic>design optimization</topic><topic>distributed algorithms</topic><topic>gradient methods</topic><topic>Jacobian matrices</topic><topic>Linear programming</topic><topic>Newton method</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>optimization methods</topic><topic>Predictive control</topic><topic>Saddle points</topic><topic>Search problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhingra, Neil K.</creatorcontrib><creatorcontrib>Khong, Sei Zhen</creatorcontrib><creatorcontrib>Jovanovic, Mihailo R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhingra, Neil K.</au><au>Khong, Sei Zhen</au><au>Jovanovic, Mihailo R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Second Order Primal-Dual Method for Nonsmooth Convex Composite Optimization</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>67</volume><issue>8</issue><spage>4061</spage><epage>4076</epage><pages>4061-4076</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We develop a second order primal-dual method for optimization problems in which the objective function is given by the sum of a strongly convex twice differentiable term and a possibly nondifferentiable convex regularizer. After introducing an auxiliary variable, we utilize the proximal operator of the nonsmooth regularizer to transform the associated augmented Lagrangian into a function that is once, but not twice, continuously differentiable. The saddle point of this function corresponds to the solution of the original optimization problem. We employ a generalization of the Hessian to define second-order updates on this function and prove global exponential stability of the corresponding differential inclusion. Furthermore, we develop a globally convergent customized algorithm that utilizes the primal-dual augmented Lagrangian as a merit function. We show that the search direction can be computed efficiently and prove quadratic/superlinear asymptotic convergence. We use the &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\ell _1&lt;/tex-math&gt;&lt;/inline-formula&gt;-regularized model predictive control problem and the problem of designing a distributed controller for a spatially invariant system to demonstrate the merits and the effectiveness of our method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2021.3115449</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4735-5872</orcidid><orcidid>https://orcid.org/0000-0001-8995-9135</orcidid><orcidid>https://orcid.org/0000-0002-4181-2924</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2022-08, Vol.67 (8), p.4061-4076
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_2695157838
source IEEE Xplore (Online service)
subjects Algorithms
Control design
control system synthesis
Control systems design
Convergence
design optimization
distributed algorithms
gradient methods
Jacobian matrices
Linear programming
Newton method
Operators (mathematics)
Optimization
optimization methods
Predictive control
Saddle points
Search problems
title A Second Order Primal-Dual Method for Nonsmooth Convex Composite Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A11%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Second%20Order%20Primal-Dual%20Method%20for%20Nonsmooth%20Convex%20Composite%20Optimization&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Dhingra,%20Neil%20K.&rft.date=2022-08-01&rft.volume=67&rft.issue=8&rft.spage=4061&rft.epage=4076&rft.pages=4061-4076&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2021.3115449&rft_dat=%3Cproquest_ieee_%3E2695157838%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-87015c03ed09009b1a571122c0668d56cf3342681f5a9c2320a3ed81987907bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2695157838&rft_id=info:pmid/&rft_ieee_id=9547812&rfr_iscdi=true