Loading…
A Second Order Primal-Dual Method for Nonsmooth Convex Composite Optimization
We develop a second order primal-dual method for optimization problems in which the objective function is given by the sum of a strongly convex twice differentiable term and a possibly nondifferentiable convex regularizer. After introducing an auxiliary variable, we utilize the proximal operator of...
Saved in:
Published in: | IEEE transactions on automatic control 2022-08, Vol.67 (8), p.4061-4076 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-87015c03ed09009b1a571122c0668d56cf3342681f5a9c2320a3ed81987907bb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-87015c03ed09009b1a571122c0668d56cf3342681f5a9c2320a3ed81987907bb3 |
container_end_page | 4076 |
container_issue | 8 |
container_start_page | 4061 |
container_title | IEEE transactions on automatic control |
container_volume | 67 |
creator | Dhingra, Neil K. Khong, Sei Zhen Jovanovic, Mihailo R. |
description | We develop a second order primal-dual method for optimization problems in which the objective function is given by the sum of a strongly convex twice differentiable term and a possibly nondifferentiable convex regularizer. After introducing an auxiliary variable, we utilize the proximal operator of the nonsmooth regularizer to transform the associated augmented Lagrangian into a function that is once, but not twice, continuously differentiable. The saddle point of this function corresponds to the solution of the original optimization problem. We employ a generalization of the Hessian to define second-order updates on this function and prove global exponential stability of the corresponding differential inclusion. Furthermore, we develop a globally convergent customized algorithm that utilizes the primal-dual augmented Lagrangian as a merit function. We show that the search direction can be computed efficiently and prove quadratic/superlinear asymptotic convergence. We use the \ell _1-regularized model predictive control problem and the problem of designing a distributed controller for a spatially invariant system to demonstrate the merits and the effectiveness of our method. |
doi_str_mv | 10.1109/TAC.2021.3115449 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2695157838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9547812</ieee_id><sourcerecordid>2695157838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-87015c03ed09009b1a571122c0668d56cf3342681f5a9c2320a3ed81987907bb3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKf3gjcBrzvPSZo0uRz1EzYnOK9D1qasY21q0on66-3Y8OrlwPOew3kIuUaYIIK-W07zCQOGE44o0lSfkBEKoRImGD8lIwBUiWZKnpOLGDfDKNMUR2Q-pe-u8G1JF6F0gb6FurHb5H5nt3Tu-rUvaeUDffVtbLzv1zT37Zf7HqLpfKx7RxddXzf1r-1r316Ss8puo7s65ph8PD4s8-dktnh6yaezpGAa-0RlgKIA7krQAHqFVmSIjBUgpSqFLCrOUyYVVsLqgnEGdmAVapVpyFYrPia3h71d8J87F3uz8bvQDicNk1qgyBRXAwUHqgg-xuAq0-2_Cz8GweylmUGa2UszR2lD5eZQqZ1z_7gWaaaQ8T9cK2Xn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695157838</pqid></control><display><type>article</type><title>A Second Order Primal-Dual Method for Nonsmooth Convex Composite Optimization</title><source>IEEE Xplore (Online service)</source><creator>Dhingra, Neil K. ; Khong, Sei Zhen ; Jovanovic, Mihailo R.</creator><creatorcontrib>Dhingra, Neil K. ; Khong, Sei Zhen ; Jovanovic, Mihailo R.</creatorcontrib><description>We develop a second order primal-dual method for optimization problems in which the objective function is given by the sum of a strongly convex twice differentiable term and a possibly nondifferentiable convex regularizer. After introducing an auxiliary variable, we utilize the proximal operator of the nonsmooth regularizer to transform the associated augmented Lagrangian into a function that is once, but not twice, continuously differentiable. The saddle point of this function corresponds to the solution of the original optimization problem. We employ a generalization of the Hessian to define second-order updates on this function and prove global exponential stability of the corresponding differential inclusion. Furthermore, we develop a globally convergent customized algorithm that utilizes the primal-dual augmented Lagrangian as a merit function. We show that the search direction can be computed efficiently and prove quadratic/superlinear asymptotic convergence. We use the <inline-formula><tex-math notation="LaTeX">\ell _1</tex-math></inline-formula>-regularized model predictive control problem and the problem of designing a distributed controller for a spatially invariant system to demonstrate the merits and the effectiveness of our method.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2021.3115449</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Control design ; control system synthesis ; Control systems design ; Convergence ; design optimization ; distributed algorithms ; gradient methods ; Jacobian matrices ; Linear programming ; Newton method ; Operators (mathematics) ; Optimization ; optimization methods ; Predictive control ; Saddle points ; Search problems</subject><ispartof>IEEE transactions on automatic control, 2022-08, Vol.67 (8), p.4061-4076</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-87015c03ed09009b1a571122c0668d56cf3342681f5a9c2320a3ed81987907bb3</citedby><cites>FETCH-LOGICAL-c291t-87015c03ed09009b1a571122c0668d56cf3342681f5a9c2320a3ed81987907bb3</cites><orcidid>0000-0003-4735-5872 ; 0000-0001-8995-9135 ; 0000-0002-4181-2924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9547812$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Dhingra, Neil K.</creatorcontrib><creatorcontrib>Khong, Sei Zhen</creatorcontrib><creatorcontrib>Jovanovic, Mihailo R.</creatorcontrib><title>A Second Order Primal-Dual Method for Nonsmooth Convex Composite Optimization</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We develop a second order primal-dual method for optimization problems in which the objective function is given by the sum of a strongly convex twice differentiable term and a possibly nondifferentiable convex regularizer. After introducing an auxiliary variable, we utilize the proximal operator of the nonsmooth regularizer to transform the associated augmented Lagrangian into a function that is once, but not twice, continuously differentiable. The saddle point of this function corresponds to the solution of the original optimization problem. We employ a generalization of the Hessian to define second-order updates on this function and prove global exponential stability of the corresponding differential inclusion. Furthermore, we develop a globally convergent customized algorithm that utilizes the primal-dual augmented Lagrangian as a merit function. We show that the search direction can be computed efficiently and prove quadratic/superlinear asymptotic convergence. We use the <inline-formula><tex-math notation="LaTeX">\ell _1</tex-math></inline-formula>-regularized model predictive control problem and the problem of designing a distributed controller for a spatially invariant system to demonstrate the merits and the effectiveness of our method.</description><subject>Algorithms</subject><subject>Control design</subject><subject>control system synthesis</subject><subject>Control systems design</subject><subject>Convergence</subject><subject>design optimization</subject><subject>distributed algorithms</subject><subject>gradient methods</subject><subject>Jacobian matrices</subject><subject>Linear programming</subject><subject>Newton method</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>optimization methods</subject><subject>Predictive control</subject><subject>Saddle points</subject><subject>Search problems</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKf3gjcBrzvPSZo0uRz1EzYnOK9D1qasY21q0on66-3Y8OrlwPOew3kIuUaYIIK-W07zCQOGE44o0lSfkBEKoRImGD8lIwBUiWZKnpOLGDfDKNMUR2Q-pe-u8G1JF6F0gb6FurHb5H5nt3Tu-rUvaeUDffVtbLzv1zT37Zf7HqLpfKx7RxddXzf1r-1r316Ss8puo7s65ph8PD4s8-dktnh6yaezpGAa-0RlgKIA7krQAHqFVmSIjBUgpSqFLCrOUyYVVsLqgnEGdmAVapVpyFYrPia3h71d8J87F3uz8bvQDicNk1qgyBRXAwUHqgg-xuAq0-2_Cz8GweylmUGa2UszR2lD5eZQqZ1z_7gWaaaQ8T9cK2Xn</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Dhingra, Neil K.</creator><creator>Khong, Sei Zhen</creator><creator>Jovanovic, Mihailo R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4735-5872</orcidid><orcidid>https://orcid.org/0000-0001-8995-9135</orcidid><orcidid>https://orcid.org/0000-0002-4181-2924</orcidid></search><sort><creationdate>20220801</creationdate><title>A Second Order Primal-Dual Method for Nonsmooth Convex Composite Optimization</title><author>Dhingra, Neil K. ; Khong, Sei Zhen ; Jovanovic, Mihailo R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-87015c03ed09009b1a571122c0668d56cf3342681f5a9c2320a3ed81987907bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Control design</topic><topic>control system synthesis</topic><topic>Control systems design</topic><topic>Convergence</topic><topic>design optimization</topic><topic>distributed algorithms</topic><topic>gradient methods</topic><topic>Jacobian matrices</topic><topic>Linear programming</topic><topic>Newton method</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>optimization methods</topic><topic>Predictive control</topic><topic>Saddle points</topic><topic>Search problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhingra, Neil K.</creatorcontrib><creatorcontrib>Khong, Sei Zhen</creatorcontrib><creatorcontrib>Jovanovic, Mihailo R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhingra, Neil K.</au><au>Khong, Sei Zhen</au><au>Jovanovic, Mihailo R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Second Order Primal-Dual Method for Nonsmooth Convex Composite Optimization</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>67</volume><issue>8</issue><spage>4061</spage><epage>4076</epage><pages>4061-4076</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We develop a second order primal-dual method for optimization problems in which the objective function is given by the sum of a strongly convex twice differentiable term and a possibly nondifferentiable convex regularizer. After introducing an auxiliary variable, we utilize the proximal operator of the nonsmooth regularizer to transform the associated augmented Lagrangian into a function that is once, but not twice, continuously differentiable. The saddle point of this function corresponds to the solution of the original optimization problem. We employ a generalization of the Hessian to define second-order updates on this function and prove global exponential stability of the corresponding differential inclusion. Furthermore, we develop a globally convergent customized algorithm that utilizes the primal-dual augmented Lagrangian as a merit function. We show that the search direction can be computed efficiently and prove quadratic/superlinear asymptotic convergence. We use the <inline-formula><tex-math notation="LaTeX">\ell _1</tex-math></inline-formula>-regularized model predictive control problem and the problem of designing a distributed controller for a spatially invariant system to demonstrate the merits and the effectiveness of our method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2021.3115449</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4735-5872</orcidid><orcidid>https://orcid.org/0000-0001-8995-9135</orcidid><orcidid>https://orcid.org/0000-0002-4181-2924</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2022-08, Vol.67 (8), p.4061-4076 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_2695157838 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Control design control system synthesis Control systems design Convergence design optimization distributed algorithms gradient methods Jacobian matrices Linear programming Newton method Operators (mathematics) Optimization optimization methods Predictive control Saddle points Search problems |
title | A Second Order Primal-Dual Method for Nonsmooth Convex Composite Optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A11%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Second%20Order%20Primal-Dual%20Method%20for%20Nonsmooth%20Convex%20Composite%20Optimization&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Dhingra,%20Neil%20K.&rft.date=2022-08-01&rft.volume=67&rft.issue=8&rft.spage=4061&rft.epage=4076&rft.pages=4061-4076&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2021.3115449&rft_dat=%3Cproquest_ieee_%3E2695157838%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-87015c03ed09009b1a571122c0668d56cf3342681f5a9c2320a3ed81987907bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2695157838&rft_id=info:pmid/&rft_ieee_id=9547812&rfr_iscdi=true |