Loading…

Combinatorial Structure of Faces in Triangulations on Surfaces

The degree of a vertex or face in a graph on the plane or other orientable surface is the number of incident edges. A face is of type if whenever . We denote the minimum vertex-degree of  by  . The purpose of our paper is to prove that every triangulation with of the torus, as well as of large enoug...

Full description

Saved in:
Bibliographic Details
Published in:Siberian mathematical journal 2022-07, Vol.63 (4), p.662-669
Main Authors: Borodin, O. V., Ivanova, A. O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c246t-751da7e3fb51d299b749abf6c917d7816080f161f0852574c2caab2e08ec611c3
cites cdi_FETCH-LOGICAL-c246t-751da7e3fb51d299b749abf6c917d7816080f161f0852574c2caab2e08ec611c3
container_end_page 669
container_issue 4
container_start_page 662
container_title Siberian mathematical journal
container_volume 63
creator Borodin, O. V.
Ivanova, A. O.
description The degree of a vertex or face in a graph on the plane or other orientable surface is the number of incident edges. A face is of type if whenever . We denote the minimum vertex-degree of  by  . The purpose of our paper is to prove that every triangulation with of the torus, as well as of large enough such a triangulation of any fixed orientable surface of higher genus has a face of one of the types , , , , , or , where all parameters are best possible.
doi_str_mv 10.1134/S0037446622040061
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2695498220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2695498220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-751da7e3fb51d299b749abf6c917d7816080f161f0852574c2caab2e08ec611c3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvA8-pMNptsLoIUq0LBw9bzkk2TsqVNarJ78N-bpYIH8TQD73tvmEfILcI9YskfGoBSci4EY8ABBJ6RGVayLBQTcE5mk1xM-iW5SmkHgBlSM_K4CIeu93oIsdd72gxxNMMYLQ2OLrWxifaerrPmt-NeD33wiQZPmzG6Sb0mF07vk735mXPysXxeL16L1fvL2-JpVRjGxVDICjda2tJ1eWFKdZIr3TlhFMqNrFFADQ4FOqgrVklumNG6YxZqawSiKefk7pR7jOFztGlod2GMPp9smVAVV3X-O1N4okwMKUXr2mPsDzp-tQjtVFP7p6bsYSdPyqzf2vib_L_pG1o9aBs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695498220</pqid></control><display><type>article</type><title>Combinatorial Structure of Faces in Triangulations on Surfaces</title><source>Springer Nature</source><creator>Borodin, O. V. ; Ivanova, A. O.</creator><creatorcontrib>Borodin, O. V. ; Ivanova, A. O.</creatorcontrib><description>The degree of a vertex or face in a graph on the plane or other orientable surface is the number of incident edges. A face is of type if whenever . We denote the minimum vertex-degree of  by  . The purpose of our paper is to prove that every triangulation with of the torus, as well as of large enough such a triangulation of any fixed orientable surface of higher genus has a face of one of the types , , , , , or , where all parameters are best possible.</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S0037446622040061</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Combinatorial analysis ; Mathematics ; Mathematics and Statistics ; Toruses ; Triangulation</subject><ispartof>Siberian mathematical journal, 2022-07, Vol.63 (4), p.662-669</ispartof><rights>Pleiades Publishing, Ltd. 2022. Russian Text © The Author(s), 2022, published in Sibirskii Matematicheskii Zhurnal, 2022, Vol. 63, No. 4, pp. 796–804.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-751da7e3fb51d299b749abf6c917d7816080f161f0852574c2caab2e08ec611c3</citedby><cites>FETCH-LOGICAL-c246t-751da7e3fb51d299b749abf6c917d7816080f161f0852574c2caab2e08ec611c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Borodin, O. V.</creatorcontrib><creatorcontrib>Ivanova, A. O.</creatorcontrib><title>Combinatorial Structure of Faces in Triangulations on Surfaces</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>The degree of a vertex or face in a graph on the plane or other orientable surface is the number of incident edges. A face is of type if whenever . We denote the minimum vertex-degree of  by  . The purpose of our paper is to prove that every triangulation with of the torus, as well as of large enough such a triangulation of any fixed orientable surface of higher genus has a face of one of the types , , , , , or , where all parameters are best possible.</description><subject>Combinatorial analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Toruses</subject><subject>Triangulation</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wFvA8-pMNptsLoIUq0LBw9bzkk2TsqVNarJ78N-bpYIH8TQD73tvmEfILcI9YskfGoBSci4EY8ABBJ6RGVayLBQTcE5mk1xM-iW5SmkHgBlSM_K4CIeu93oIsdd72gxxNMMYLQ2OLrWxifaerrPmt-NeD33wiQZPmzG6Sb0mF07vk735mXPysXxeL16L1fvL2-JpVRjGxVDICjda2tJ1eWFKdZIr3TlhFMqNrFFADQ4FOqgrVklumNG6YxZqawSiKefk7pR7jOFztGlod2GMPp9smVAVV3X-O1N4okwMKUXr2mPsDzp-tQjtVFP7p6bsYSdPyqzf2vib_L_pG1o9aBs</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Borodin, O. V.</creator><creator>Ivanova, A. O.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220701</creationdate><title>Combinatorial Structure of Faces in Triangulations on Surfaces</title><author>Borodin, O. V. ; Ivanova, A. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-751da7e3fb51d299b749abf6c917d7816080f161f0852574c2caab2e08ec611c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Combinatorial analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Toruses</topic><topic>Triangulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borodin, O. V.</creatorcontrib><creatorcontrib>Ivanova, A. O.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borodin, O. V.</au><au>Ivanova, A. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combinatorial Structure of Faces in Triangulations on Surfaces</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>63</volume><issue>4</issue><spage>662</spage><epage>669</epage><pages>662-669</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>The degree of a vertex or face in a graph on the plane or other orientable surface is the number of incident edges. A face is of type if whenever . We denote the minimum vertex-degree of  by  . The purpose of our paper is to prove that every triangulation with of the torus, as well as of large enough such a triangulation of any fixed orientable surface of higher genus has a face of one of the types , , , , , or , where all parameters are best possible.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0037446622040061</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0037-4466
ispartof Siberian mathematical journal, 2022-07, Vol.63 (4), p.662-669
issn 0037-4466
1573-9260
language eng
recordid cdi_proquest_journals_2695498220
source Springer Nature
subjects Combinatorial analysis
Mathematics
Mathematics and Statistics
Toruses
Triangulation
title Combinatorial Structure of Faces in Triangulations on Surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combinatorial%20Structure%20of%20Faces%20in%20Triangulations%20on%20Surfaces&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Borodin,%20O.%20V.&rft.date=2022-07-01&rft.volume=63&rft.issue=4&rft.spage=662&rft.epage=669&rft.pages=662-669&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S0037446622040061&rft_dat=%3Cproquest_cross%3E2695498220%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-751da7e3fb51d299b749abf6c917d7816080f161f0852574c2caab2e08ec611c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2695498220&rft_id=info:pmid/&rfr_iscdi=true