Loading…

Extension with log-canonical measures and an improvement to the plt extension of Demailly–Hacon–Păun

With a view to proving the conjecture of “dlt extension” related to the abundance conjecture, a sequence of potential candidates for replacing the Ohsawa measure in the Ohsawa–Takegoshi L 2 extension theorem, called the “lc-measures”, which hopefully could provide the L 2 estimate of a holomorphic e...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische annalen 2022-08, Vol.383 (3-4), p.943-997
Main Authors: Chan, Tsz On Mario, Choi, Young-Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-59811336ce80f09b2f2a771c3e8c391d86d3a915062f65b6aa2f09b51aa02edc3
cites cdi_FETCH-LOGICAL-c319t-59811336ce80f09b2f2a771c3e8c391d86d3a915062f65b6aa2f09b51aa02edc3
container_end_page 997
container_issue 3-4
container_start_page 943
container_title Mathematische annalen
container_volume 383
creator Chan, Tsz On Mario
Choi, Young-Jun
description With a view to proving the conjecture of “dlt extension” related to the abundance conjecture, a sequence of potential candidates for replacing the Ohsawa measure in the Ohsawa–Takegoshi L 2 extension theorem, called the “lc-measures”, which hopefully could provide the L 2 estimate of a holomorphic extension of any suitable holomorphic section on a subvariety with singular locus, are introduced in the first half of the paper. Based on the version of L 2 extension theorem proved by Demailly, a proof is provided to show that the lc-measure can replace the Ohsawa measure in the case where the classical Ohsawa–Takegoshi L 2 extension works, with some improvements on the assumptions on the metrics involved. The second half of the paper provides a simplified proof of the result of Demailly–Hacon–Păun on the “plt extension” with the superfluous assumption “ supp D ⊂ supp S + B ” in their result removed. Most arguments in the proof are readily adopted to the “dlt extension” once the L 2 estimates with respect to the lc-measures of holomorphic extensions of sections on subvarieties with singular locus are ready.
doi_str_mv 10.1007/s00208-021-02152-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2695504367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2695504367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-59811336ce80f09b2f2a771c3e8c391d86d3a915062f65b6aa2f09b51aa02edc3</originalsourceid><addsrcrecordid>eNp9kD1OAzEQhS0EEiFwASpL1IaxHe9PicJPkCJBAbXleL3JRrt2sL1AOiSOwJU4CSfBIQg6itEr5r03ow-hYwqnFCA_CwAMCgKMbkYwwnfQgI44I7SAfBcN0l4QUXC6jw5CWAIABxAD1Fy-RGND4yx-buICt25OtLLONlq1uDMq9N4ErGyVBjfdyrsn0xkbcXQ4LgxetRGb3w5X4wvTqaZt15-v7xOlnU169_HW20O0V6s2mKMfHaKHq8v78YRMb69vxudTojktIxFlQSnnmTYF1FDOWM1UnlPNTaF5Sasiq7gqqYCM1ZmYZUqxjU1QpYCZSvMhOtn2plcfexOiXLre23RSsqwUAkY8y5OLbV3auxC8qeXKN53ya0lBbpDKLVKZcMpvpJKnEN-GQjLbufF_1f-kvgDv2nxP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695504367</pqid></control><display><type>article</type><title>Extension with log-canonical measures and an improvement to the plt extension of Demailly–Hacon–Păun</title><source>Springer Link</source><creator>Chan, Tsz On Mario ; Choi, Young-Jun</creator><creatorcontrib>Chan, Tsz On Mario ; Choi, Young-Jun</creatorcontrib><description>With a view to proving the conjecture of “dlt extension” related to the abundance conjecture, a sequence of potential candidates for replacing the Ohsawa measure in the Ohsawa–Takegoshi L 2 extension theorem, called the “lc-measures”, which hopefully could provide the L 2 estimate of a holomorphic extension of any suitable holomorphic section on a subvariety with singular locus, are introduced in the first half of the paper. Based on the version of L 2 extension theorem proved by Demailly, a proof is provided to show that the lc-measure can replace the Ohsawa measure in the case where the classical Ohsawa–Takegoshi L 2 extension works, with some improvements on the assumptions on the metrics involved. The second half of the paper provides a simplified proof of the result of Demailly–Hacon–Păun on the “plt extension” with the superfluous assumption “ supp D ⊂ supp S + B ” in their result removed. Most arguments in the proof are readily adopted to the “dlt extension” once the L 2 estimates with respect to the lc-measures of holomorphic extensions of sections on subvarieties with singular locus are ready.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-021-02152-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Theorems</subject><ispartof>Mathematische annalen, 2022-08, Vol.383 (3-4), p.943-997</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-59811336ce80f09b2f2a771c3e8c391d86d3a915062f65b6aa2f09b51aa02edc3</citedby><cites>FETCH-LOGICAL-c319t-59811336ce80f09b2f2a771c3e8c391d86d3a915062f65b6aa2f09b51aa02edc3</cites><orcidid>0000-0001-7252-6499</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Chan, Tsz On Mario</creatorcontrib><creatorcontrib>Choi, Young-Jun</creatorcontrib><title>Extension with log-canonical measures and an improvement to the plt extension of Demailly–Hacon–Păun</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>With a view to proving the conjecture of “dlt extension” related to the abundance conjecture, a sequence of potential candidates for replacing the Ohsawa measure in the Ohsawa–Takegoshi L 2 extension theorem, called the “lc-measures”, which hopefully could provide the L 2 estimate of a holomorphic extension of any suitable holomorphic section on a subvariety with singular locus, are introduced in the first half of the paper. Based on the version of L 2 extension theorem proved by Demailly, a proof is provided to show that the lc-measure can replace the Ohsawa measure in the case where the classical Ohsawa–Takegoshi L 2 extension works, with some improvements on the assumptions on the metrics involved. The second half of the paper provides a simplified proof of the result of Demailly–Hacon–Păun on the “plt extension” with the superfluous assumption “ supp D ⊂ supp S + B ” in their result removed. Most arguments in the proof are readily adopted to the “dlt extension” once the L 2 estimates with respect to the lc-measures of holomorphic extensions of sections on subvarieties with singular locus are ready.</description><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theorems</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1OAzEQhS0EEiFwASpL1IaxHe9PicJPkCJBAbXleL3JRrt2sL1AOiSOwJU4CSfBIQg6itEr5r03ow-hYwqnFCA_CwAMCgKMbkYwwnfQgI44I7SAfBcN0l4QUXC6jw5CWAIABxAD1Fy-RGND4yx-buICt25OtLLONlq1uDMq9N4ErGyVBjfdyrsn0xkbcXQ4LgxetRGb3w5X4wvTqaZt15-v7xOlnU169_HW20O0V6s2mKMfHaKHq8v78YRMb69vxudTojktIxFlQSnnmTYF1FDOWM1UnlPNTaF5Sasiq7gqqYCM1ZmYZUqxjU1QpYCZSvMhOtn2plcfexOiXLre23RSsqwUAkY8y5OLbV3auxC8qeXKN53ya0lBbpDKLVKZcMpvpJKnEN-GQjLbufF_1f-kvgDv2nxP</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Chan, Tsz On Mario</creator><creator>Choi, Young-Jun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7252-6499</orcidid></search><sort><creationdate>20220801</creationdate><title>Extension with log-canonical measures and an improvement to the plt extension of Demailly–Hacon–Păun</title><author>Chan, Tsz On Mario ; Choi, Young-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-59811336ce80f09b2f2a771c3e8c391d86d3a915062f65b6aa2f09b51aa02edc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, Tsz On Mario</creatorcontrib><creatorcontrib>Choi, Young-Jun</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, Tsz On Mario</au><au>Choi, Young-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension with log-canonical measures and an improvement to the plt extension of Demailly–Hacon–Păun</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>383</volume><issue>3-4</issue><spage>943</spage><epage>997</epage><pages>943-997</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>With a view to proving the conjecture of “dlt extension” related to the abundance conjecture, a sequence of potential candidates for replacing the Ohsawa measure in the Ohsawa–Takegoshi L 2 extension theorem, called the “lc-measures”, which hopefully could provide the L 2 estimate of a holomorphic extension of any suitable holomorphic section on a subvariety with singular locus, are introduced in the first half of the paper. Based on the version of L 2 extension theorem proved by Demailly, a proof is provided to show that the lc-measure can replace the Ohsawa measure in the case where the classical Ohsawa–Takegoshi L 2 extension works, with some improvements on the assumptions on the metrics involved. The second half of the paper provides a simplified proof of the result of Demailly–Hacon–Păun on the “plt extension” with the superfluous assumption “ supp D ⊂ supp S + B ” in their result removed. Most arguments in the proof are readily adopted to the “dlt extension” once the L 2 estimates with respect to the lc-measures of holomorphic extensions of sections on subvarieties with singular locus are ready.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-021-02152-3</doi><tpages>55</tpages><orcidid>https://orcid.org/0000-0001-7252-6499</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-5831
ispartof Mathematische annalen, 2022-08, Vol.383 (3-4), p.943-997
issn 0025-5831
1432-1807
language eng
recordid cdi_proquest_journals_2695504367
source Springer Link
subjects Mathematical analysis
Mathematics
Mathematics and Statistics
Theorems
title Extension with log-canonical measures and an improvement to the plt extension of Demailly–Hacon–Păun
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20with%20log-canonical%20measures%20and%20an%20improvement%20to%20the%20plt%20extension%20of%20Demailly%E2%80%93Hacon%E2%80%93P%C4%83un&rft.jtitle=Mathematische%20annalen&rft.au=Chan,%20Tsz%20On%20Mario&rft.date=2022-08-01&rft.volume=383&rft.issue=3-4&rft.spage=943&rft.epage=997&rft.pages=943-997&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-021-02152-3&rft_dat=%3Cproquest_cross%3E2695504367%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-59811336ce80f09b2f2a771c3e8c391d86d3a915062f65b6aa2f09b51aa02edc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2695504367&rft_id=info:pmid/&rfr_iscdi=true