Loading…
An experimental study of shock transmission from a detonation tube
An experimental evaluation of the transmission of shock waves from a detonating gas mixture in a 0.5-in-inner-diameter open-ended tube into an inert atmosphere is described in this paper. Stoichiometric H 2 /O 2 at 1 atm was used as the reactive gas medium. Results from in-tube diagnostics indicated...
Saved in:
Published in: | Shock waves 2022-07, Vol.32 (5), p.427-436 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-4f49eefdf50d976476e4bf957980bd1e3f9eabaf3267d3969dcd498ebc13ef873 |
container_end_page | 436 |
container_issue | 5 |
container_start_page | 427 |
container_title | Shock waves |
container_volume | 32 |
creator | Thomas, J. C. Rodriguez, F. A. Teitge, D. S. Kunka, L. N. Gaddis, G. N. Browne, Z. K. Ahumada, C. B. Balci, E. T. Jackson, S. I. Petersen, E. L. Oran, E. S. |
description | An experimental evaluation of the transmission of shock waves from a detonating gas mixture in a 0.5-in-inner-diameter open-ended tube into an inert atmosphere is described in this paper. Stoichiometric H
2
/O
2
at 1 atm was used as the reactive gas medium. Results from in-tube diagnostics indicated successful deflagration-to-detonation transition (DDT), which leads to an overdriven detonation before exiting the tube at near Chapman–Jouguet (CJ) conditions. Out-of-tube diagnostics characterized the transmission of the shock wave into the surrounding environment, where the shock wave decays into an acoustic wave as it travels away from the tube exit. A mathematical treatment of overpressure and time-of-arrival data allowed for a direct analytical description of the transmitted shock wave’s transient velocity. This description is combined with a first-principles gas-dynamics treatment of the moving normal shock wave to describe the conditions behind the attenuating shock wave. This work furthers the understanding of shock transmission from an open-ended detonation tube and provides a theoretical framework to estimate the resulting conditions. |
doi_str_mv | 10.1007/s00193-022-01086-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696497097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696497097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-4f49eefdf50d976476e4bf957980bd1e3f9eabaf3267d3969dcd498ebc13ef873</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczRfTTbHWvyCghc9h-xmoq1tUpMs2H_v1hW8eRoYnvcd5kHoktFrRqm-KZQyIwjlnFBGG0X4EZowKTjhbCaO0YQa0RDGG32KzkpZD7hWWk_Q7Txi-NpBXm0hVrfBpfZ-j1PA5T11H7hmF8t2VcoqRRxy2mKHPdQUXT1sat_COToJblPg4ndO0ev93cvikSyfH54W8yXpuKaVyCANQPBhRr3RSmoFsg1mpk1DW89ABAOudUFwpb0wyvjOS9NA2zEBodFiiq7G3l1Onz2Uatepz3E4abkyShpNzYHiI9XlVEqGYHfDby7vLaP24MqOruzgyv64snwIiTFUBji-Qf6r_if1Dc28bPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696497097</pqid></control><display><type>article</type><title>An experimental study of shock transmission from a detonation tube</title><source>Springer Nature</source><creator>Thomas, J. C. ; Rodriguez, F. A. ; Teitge, D. S. ; Kunka, L. N. ; Gaddis, G. N. ; Browne, Z. K. ; Ahumada, C. B. ; Balci, E. T. ; Jackson, S. I. ; Petersen, E. L. ; Oran, E. S.</creator><creatorcontrib>Thomas, J. C. ; Rodriguez, F. A. ; Teitge, D. S. ; Kunka, L. N. ; Gaddis, G. N. ; Browne, Z. K. ; Ahumada, C. B. ; Balci, E. T. ; Jackson, S. I. ; Petersen, E. L. ; Oran, E. S.</creatorcontrib><description>An experimental evaluation of the transmission of shock waves from a detonating gas mixture in a 0.5-in-inner-diameter open-ended tube into an inert atmosphere is described in this paper. Stoichiometric H
2
/O
2
at 1 atm was used as the reactive gas medium. Results from in-tube diagnostics indicated successful deflagration-to-detonation transition (DDT), which leads to an overdriven detonation before exiting the tube at near Chapman–Jouguet (CJ) conditions. Out-of-tube diagnostics characterized the transmission of the shock wave into the surrounding environment, where the shock wave decays into an acoustic wave as it travels away from the tube exit. A mathematical treatment of overpressure and time-of-arrival data allowed for a direct analytical description of the transmitted shock wave’s transient velocity. This description is combined with a first-principles gas-dynamics treatment of the moving normal shock wave to describe the conditions behind the attenuating shock wave. This work furthers the understanding of shock transmission from an open-ended detonation tube and provides a theoretical framework to estimate the resulting conditions.</description><identifier>ISSN: 0938-1287</identifier><identifier>EISSN: 1432-2153</identifier><identifier>DOI: 10.1007/s00193-022-01086-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustic waves ; Acoustics ; Condensed Matter Physics ; Deflagration ; Detonation ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; First principles ; Fluid- and Aerodynamics ; Gas mixtures ; Heat and Mass Transfer ; Inert atmospheres ; Normal shock waves ; Original Article ; Overpressure ; Thermodynamics</subject><ispartof>Shock waves, 2022-07, Vol.32 (5), p.427-436</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-4f49eefdf50d976476e4bf957980bd1e3f9eabaf3267d3969dcd498ebc13ef873</cites><orcidid>0000-0002-2555-6772 ; 0000-0002-6814-3468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Thomas, J. C.</creatorcontrib><creatorcontrib>Rodriguez, F. A.</creatorcontrib><creatorcontrib>Teitge, D. S.</creatorcontrib><creatorcontrib>Kunka, L. N.</creatorcontrib><creatorcontrib>Gaddis, G. N.</creatorcontrib><creatorcontrib>Browne, Z. K.</creatorcontrib><creatorcontrib>Ahumada, C. B.</creatorcontrib><creatorcontrib>Balci, E. T.</creatorcontrib><creatorcontrib>Jackson, S. I.</creatorcontrib><creatorcontrib>Petersen, E. L.</creatorcontrib><creatorcontrib>Oran, E. S.</creatorcontrib><title>An experimental study of shock transmission from a detonation tube</title><title>Shock waves</title><addtitle>Shock Waves</addtitle><description>An experimental evaluation of the transmission of shock waves from a detonating gas mixture in a 0.5-in-inner-diameter open-ended tube into an inert atmosphere is described in this paper. Stoichiometric H
2
/O
2
at 1 atm was used as the reactive gas medium. Results from in-tube diagnostics indicated successful deflagration-to-detonation transition (DDT), which leads to an overdriven detonation before exiting the tube at near Chapman–Jouguet (CJ) conditions. Out-of-tube diagnostics characterized the transmission of the shock wave into the surrounding environment, where the shock wave decays into an acoustic wave as it travels away from the tube exit. A mathematical treatment of overpressure and time-of-arrival data allowed for a direct analytical description of the transmitted shock wave’s transient velocity. This description is combined with a first-principles gas-dynamics treatment of the moving normal shock wave to describe the conditions behind the attenuating shock wave. This work furthers the understanding of shock transmission from an open-ended detonation tube and provides a theoretical framework to estimate the resulting conditions.</description><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Condensed Matter Physics</subject><subject>Deflagration</subject><subject>Detonation</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>First principles</subject><subject>Fluid- and Aerodynamics</subject><subject>Gas mixtures</subject><subject>Heat and Mass Transfer</subject><subject>Inert atmospheres</subject><subject>Normal shock waves</subject><subject>Original Article</subject><subject>Overpressure</subject><subject>Thermodynamics</subject><issn>0938-1287</issn><issn>1432-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczRfTTbHWvyCghc9h-xmoq1tUpMs2H_v1hW8eRoYnvcd5kHoktFrRqm-KZQyIwjlnFBGG0X4EZowKTjhbCaO0YQa0RDGG32KzkpZD7hWWk_Q7Txi-NpBXm0hVrfBpfZ-j1PA5T11H7hmF8t2VcoqRRxy2mKHPdQUXT1sat_COToJblPg4ndO0ev93cvikSyfH54W8yXpuKaVyCANQPBhRr3RSmoFsg1mpk1DW89ABAOudUFwpb0wyvjOS9NA2zEBodFiiq7G3l1Onz2Uatepz3E4abkyShpNzYHiI9XlVEqGYHfDby7vLaP24MqOruzgyv64snwIiTFUBji-Qf6r_if1Dc28bPI</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Thomas, J. C.</creator><creator>Rodriguez, F. A.</creator><creator>Teitge, D. S.</creator><creator>Kunka, L. N.</creator><creator>Gaddis, G. N.</creator><creator>Browne, Z. K.</creator><creator>Ahumada, C. B.</creator><creator>Balci, E. T.</creator><creator>Jackson, S. I.</creator><creator>Petersen, E. L.</creator><creator>Oran, E. S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2555-6772</orcidid><orcidid>https://orcid.org/0000-0002-6814-3468</orcidid></search><sort><creationdate>20220701</creationdate><title>An experimental study of shock transmission from a detonation tube</title><author>Thomas, J. C. ; Rodriguez, F. A. ; Teitge, D. S. ; Kunka, L. N. ; Gaddis, G. N. ; Browne, Z. K. ; Ahumada, C. B. ; Balci, E. T. ; Jackson, S. I. ; Petersen, E. L. ; Oran, E. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-4f49eefdf50d976476e4bf957980bd1e3f9eabaf3267d3969dcd498ebc13ef873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Condensed Matter Physics</topic><topic>Deflagration</topic><topic>Detonation</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>First principles</topic><topic>Fluid- and Aerodynamics</topic><topic>Gas mixtures</topic><topic>Heat and Mass Transfer</topic><topic>Inert atmospheres</topic><topic>Normal shock waves</topic><topic>Original Article</topic><topic>Overpressure</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, J. C.</creatorcontrib><creatorcontrib>Rodriguez, F. A.</creatorcontrib><creatorcontrib>Teitge, D. S.</creatorcontrib><creatorcontrib>Kunka, L. N.</creatorcontrib><creatorcontrib>Gaddis, G. N.</creatorcontrib><creatorcontrib>Browne, Z. K.</creatorcontrib><creatorcontrib>Ahumada, C. B.</creatorcontrib><creatorcontrib>Balci, E. T.</creatorcontrib><creatorcontrib>Jackson, S. I.</creatorcontrib><creatorcontrib>Petersen, E. L.</creatorcontrib><creatorcontrib>Oran, E. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, J. C.</au><au>Rodriguez, F. A.</au><au>Teitge, D. S.</au><au>Kunka, L. N.</au><au>Gaddis, G. N.</au><au>Browne, Z. K.</au><au>Ahumada, C. B.</au><au>Balci, E. T.</au><au>Jackson, S. I.</au><au>Petersen, E. L.</au><au>Oran, E. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental study of shock transmission from a detonation tube</atitle><jtitle>Shock waves</jtitle><stitle>Shock Waves</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>32</volume><issue>5</issue><spage>427</spage><epage>436</epage><pages>427-436</pages><issn>0938-1287</issn><eissn>1432-2153</eissn><abstract>An experimental evaluation of the transmission of shock waves from a detonating gas mixture in a 0.5-in-inner-diameter open-ended tube into an inert atmosphere is described in this paper. Stoichiometric H
2
/O
2
at 1 atm was used as the reactive gas medium. Results from in-tube diagnostics indicated successful deflagration-to-detonation transition (DDT), which leads to an overdriven detonation before exiting the tube at near Chapman–Jouguet (CJ) conditions. Out-of-tube diagnostics characterized the transmission of the shock wave into the surrounding environment, where the shock wave decays into an acoustic wave as it travels away from the tube exit. A mathematical treatment of overpressure and time-of-arrival data allowed for a direct analytical description of the transmitted shock wave’s transient velocity. This description is combined with a first-principles gas-dynamics treatment of the moving normal shock wave to describe the conditions behind the attenuating shock wave. This work furthers the understanding of shock transmission from an open-ended detonation tube and provides a theoretical framework to estimate the resulting conditions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00193-022-01086-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2555-6772</orcidid><orcidid>https://orcid.org/0000-0002-6814-3468</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-1287 |
ispartof | Shock waves, 2022-07, Vol.32 (5), p.427-436 |
issn | 0938-1287 1432-2153 |
language | eng |
recordid | cdi_proquest_journals_2696497097 |
source | Springer Nature |
subjects | Acoustic waves Acoustics Condensed Matter Physics Deflagration Detonation Engineering Engineering Fluid Dynamics Engineering Thermodynamics First principles Fluid- and Aerodynamics Gas mixtures Heat and Mass Transfer Inert atmospheres Normal shock waves Original Article Overpressure Thermodynamics |
title | An experimental study of shock transmission from a detonation tube |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20study%20of%20shock%20transmission%20from%20a%20detonation%20tube&rft.jtitle=Shock%20waves&rft.au=Thomas,%20J.%20C.&rft.date=2022-07-01&rft.volume=32&rft.issue=5&rft.spage=427&rft.epage=436&rft.pages=427-436&rft.issn=0938-1287&rft.eissn=1432-2153&rft_id=info:doi/10.1007/s00193-022-01086-2&rft_dat=%3Cproquest_cross%3E2696497097%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-4f49eefdf50d976476e4bf957980bd1e3f9eabaf3267d3969dcd498ebc13ef873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2696497097&rft_id=info:pmid/&rfr_iscdi=true |