Loading…

An experimental study of shock transmission from a detonation tube

An experimental evaluation of the transmission of shock waves from a detonating gas mixture in a 0.5-in-inner-diameter open-ended tube into an inert atmosphere is described in this paper. Stoichiometric H 2 /O 2 at 1 atm was used as the reactive gas medium. Results from in-tube diagnostics indicated...

Full description

Saved in:
Bibliographic Details
Published in:Shock waves 2022-07, Vol.32 (5), p.427-436
Main Authors: Thomas, J. C., Rodriguez, F. A., Teitge, D. S., Kunka, L. N., Gaddis, G. N., Browne, Z. K., Ahumada, C. B., Balci, E. T., Jackson, S. I., Petersen, E. L., Oran, E. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-4f49eefdf50d976476e4bf957980bd1e3f9eabaf3267d3969dcd498ebc13ef873
container_end_page 436
container_issue 5
container_start_page 427
container_title Shock waves
container_volume 32
creator Thomas, J. C.
Rodriguez, F. A.
Teitge, D. S.
Kunka, L. N.
Gaddis, G. N.
Browne, Z. K.
Ahumada, C. B.
Balci, E. T.
Jackson, S. I.
Petersen, E. L.
Oran, E. S.
description An experimental evaluation of the transmission of shock waves from a detonating gas mixture in a 0.5-in-inner-diameter open-ended tube into an inert atmosphere is described in this paper. Stoichiometric H 2 /O 2 at 1 atm was used as the reactive gas medium. Results from in-tube diagnostics indicated successful deflagration-to-detonation transition (DDT), which leads to an overdriven detonation before exiting the tube at near Chapman–Jouguet (CJ) conditions. Out-of-tube diagnostics characterized the transmission of the shock wave into the surrounding environment, where the shock wave decays into an acoustic wave as it travels away from the tube exit. A mathematical treatment of overpressure and time-of-arrival data allowed for a direct analytical description of the transmitted shock wave’s transient velocity. This description is combined with a first-principles gas-dynamics treatment of the moving normal shock wave to describe the conditions behind the attenuating shock wave. This work furthers the understanding of shock transmission from an open-ended detonation tube and provides a theoretical framework to estimate the resulting conditions.
doi_str_mv 10.1007/s00193-022-01086-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696497097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696497097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-4f49eefdf50d976476e4bf957980bd1e3f9eabaf3267d3969dcd498ebc13ef873</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczRfTTbHWvyCghc9h-xmoq1tUpMs2H_v1hW8eRoYnvcd5kHoktFrRqm-KZQyIwjlnFBGG0X4EZowKTjhbCaO0YQa0RDGG32KzkpZD7hWWk_Q7Txi-NpBXm0hVrfBpfZ-j1PA5T11H7hmF8t2VcoqRRxy2mKHPdQUXT1sat_COToJblPg4ndO0ev93cvikSyfH54W8yXpuKaVyCANQPBhRr3RSmoFsg1mpk1DW89ABAOudUFwpb0wyvjOS9NA2zEBodFiiq7G3l1Onz2Uatepz3E4abkyShpNzYHiI9XlVEqGYHfDby7vLaP24MqOruzgyv64snwIiTFUBji-Qf6r_if1Dc28bPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696497097</pqid></control><display><type>article</type><title>An experimental study of shock transmission from a detonation tube</title><source>Springer Nature</source><creator>Thomas, J. C. ; Rodriguez, F. A. ; Teitge, D. S. ; Kunka, L. N. ; Gaddis, G. N. ; Browne, Z. K. ; Ahumada, C. B. ; Balci, E. T. ; Jackson, S. I. ; Petersen, E. L. ; Oran, E. S.</creator><creatorcontrib>Thomas, J. C. ; Rodriguez, F. A. ; Teitge, D. S. ; Kunka, L. N. ; Gaddis, G. N. ; Browne, Z. K. ; Ahumada, C. B. ; Balci, E. T. ; Jackson, S. I. ; Petersen, E. L. ; Oran, E. S.</creatorcontrib><description>An experimental evaluation of the transmission of shock waves from a detonating gas mixture in a 0.5-in-inner-diameter open-ended tube into an inert atmosphere is described in this paper. Stoichiometric H 2 /O 2 at 1 atm was used as the reactive gas medium. Results from in-tube diagnostics indicated successful deflagration-to-detonation transition (DDT), which leads to an overdriven detonation before exiting the tube at near Chapman–Jouguet (CJ) conditions. Out-of-tube diagnostics characterized the transmission of the shock wave into the surrounding environment, where the shock wave decays into an acoustic wave as it travels away from the tube exit. A mathematical treatment of overpressure and time-of-arrival data allowed for a direct analytical description of the transmitted shock wave’s transient velocity. This description is combined with a first-principles gas-dynamics treatment of the moving normal shock wave to describe the conditions behind the attenuating shock wave. This work furthers the understanding of shock transmission from an open-ended detonation tube and provides a theoretical framework to estimate the resulting conditions.</description><identifier>ISSN: 0938-1287</identifier><identifier>EISSN: 1432-2153</identifier><identifier>DOI: 10.1007/s00193-022-01086-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustic waves ; Acoustics ; Condensed Matter Physics ; Deflagration ; Detonation ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; First principles ; Fluid- and Aerodynamics ; Gas mixtures ; Heat and Mass Transfer ; Inert atmospheres ; Normal shock waves ; Original Article ; Overpressure ; Thermodynamics</subject><ispartof>Shock waves, 2022-07, Vol.32 (5), p.427-436</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-4f49eefdf50d976476e4bf957980bd1e3f9eabaf3267d3969dcd498ebc13ef873</cites><orcidid>0000-0002-2555-6772 ; 0000-0002-6814-3468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Thomas, J. C.</creatorcontrib><creatorcontrib>Rodriguez, F. A.</creatorcontrib><creatorcontrib>Teitge, D. S.</creatorcontrib><creatorcontrib>Kunka, L. N.</creatorcontrib><creatorcontrib>Gaddis, G. N.</creatorcontrib><creatorcontrib>Browne, Z. K.</creatorcontrib><creatorcontrib>Ahumada, C. B.</creatorcontrib><creatorcontrib>Balci, E. T.</creatorcontrib><creatorcontrib>Jackson, S. I.</creatorcontrib><creatorcontrib>Petersen, E. L.</creatorcontrib><creatorcontrib>Oran, E. S.</creatorcontrib><title>An experimental study of shock transmission from a detonation tube</title><title>Shock waves</title><addtitle>Shock Waves</addtitle><description>An experimental evaluation of the transmission of shock waves from a detonating gas mixture in a 0.5-in-inner-diameter open-ended tube into an inert atmosphere is described in this paper. Stoichiometric H 2 /O 2 at 1 atm was used as the reactive gas medium. Results from in-tube diagnostics indicated successful deflagration-to-detonation transition (DDT), which leads to an overdriven detonation before exiting the tube at near Chapman–Jouguet (CJ) conditions. Out-of-tube diagnostics characterized the transmission of the shock wave into the surrounding environment, where the shock wave decays into an acoustic wave as it travels away from the tube exit. A mathematical treatment of overpressure and time-of-arrival data allowed for a direct analytical description of the transmitted shock wave’s transient velocity. This description is combined with a first-principles gas-dynamics treatment of the moving normal shock wave to describe the conditions behind the attenuating shock wave. This work furthers the understanding of shock transmission from an open-ended detonation tube and provides a theoretical framework to estimate the resulting conditions.</description><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Condensed Matter Physics</subject><subject>Deflagration</subject><subject>Detonation</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>First principles</subject><subject>Fluid- and Aerodynamics</subject><subject>Gas mixtures</subject><subject>Heat and Mass Transfer</subject><subject>Inert atmospheres</subject><subject>Normal shock waves</subject><subject>Original Article</subject><subject>Overpressure</subject><subject>Thermodynamics</subject><issn>0938-1287</issn><issn>1432-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczRfTTbHWvyCghc9h-xmoq1tUpMs2H_v1hW8eRoYnvcd5kHoktFrRqm-KZQyIwjlnFBGG0X4EZowKTjhbCaO0YQa0RDGG32KzkpZD7hWWk_Q7Txi-NpBXm0hVrfBpfZ-j1PA5T11H7hmF8t2VcoqRRxy2mKHPdQUXT1sat_COToJblPg4ndO0ev93cvikSyfH54W8yXpuKaVyCANQPBhRr3RSmoFsg1mpk1DW89ABAOudUFwpb0wyvjOS9NA2zEBodFiiq7G3l1Onz2Uatepz3E4abkyShpNzYHiI9XlVEqGYHfDby7vLaP24MqOruzgyv64snwIiTFUBji-Qf6r_if1Dc28bPI</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Thomas, J. C.</creator><creator>Rodriguez, F. A.</creator><creator>Teitge, D. S.</creator><creator>Kunka, L. N.</creator><creator>Gaddis, G. N.</creator><creator>Browne, Z. K.</creator><creator>Ahumada, C. B.</creator><creator>Balci, E. T.</creator><creator>Jackson, S. I.</creator><creator>Petersen, E. L.</creator><creator>Oran, E. S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2555-6772</orcidid><orcidid>https://orcid.org/0000-0002-6814-3468</orcidid></search><sort><creationdate>20220701</creationdate><title>An experimental study of shock transmission from a detonation tube</title><author>Thomas, J. C. ; Rodriguez, F. A. ; Teitge, D. S. ; Kunka, L. N. ; Gaddis, G. N. ; Browne, Z. K. ; Ahumada, C. B. ; Balci, E. T. ; Jackson, S. I. ; Petersen, E. L. ; Oran, E. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-4f49eefdf50d976476e4bf957980bd1e3f9eabaf3267d3969dcd498ebc13ef873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Condensed Matter Physics</topic><topic>Deflagration</topic><topic>Detonation</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>First principles</topic><topic>Fluid- and Aerodynamics</topic><topic>Gas mixtures</topic><topic>Heat and Mass Transfer</topic><topic>Inert atmospheres</topic><topic>Normal shock waves</topic><topic>Original Article</topic><topic>Overpressure</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, J. C.</creatorcontrib><creatorcontrib>Rodriguez, F. A.</creatorcontrib><creatorcontrib>Teitge, D. S.</creatorcontrib><creatorcontrib>Kunka, L. N.</creatorcontrib><creatorcontrib>Gaddis, G. N.</creatorcontrib><creatorcontrib>Browne, Z. K.</creatorcontrib><creatorcontrib>Ahumada, C. B.</creatorcontrib><creatorcontrib>Balci, E. T.</creatorcontrib><creatorcontrib>Jackson, S. I.</creatorcontrib><creatorcontrib>Petersen, E. L.</creatorcontrib><creatorcontrib>Oran, E. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, J. C.</au><au>Rodriguez, F. A.</au><au>Teitge, D. S.</au><au>Kunka, L. N.</au><au>Gaddis, G. N.</au><au>Browne, Z. K.</au><au>Ahumada, C. B.</au><au>Balci, E. T.</au><au>Jackson, S. I.</au><au>Petersen, E. L.</au><au>Oran, E. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An experimental study of shock transmission from a detonation tube</atitle><jtitle>Shock waves</jtitle><stitle>Shock Waves</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>32</volume><issue>5</issue><spage>427</spage><epage>436</epage><pages>427-436</pages><issn>0938-1287</issn><eissn>1432-2153</eissn><abstract>An experimental evaluation of the transmission of shock waves from a detonating gas mixture in a 0.5-in-inner-diameter open-ended tube into an inert atmosphere is described in this paper. Stoichiometric H 2 /O 2 at 1 atm was used as the reactive gas medium. Results from in-tube diagnostics indicated successful deflagration-to-detonation transition (DDT), which leads to an overdriven detonation before exiting the tube at near Chapman–Jouguet (CJ) conditions. Out-of-tube diagnostics characterized the transmission of the shock wave into the surrounding environment, where the shock wave decays into an acoustic wave as it travels away from the tube exit. A mathematical treatment of overpressure and time-of-arrival data allowed for a direct analytical description of the transmitted shock wave’s transient velocity. This description is combined with a first-principles gas-dynamics treatment of the moving normal shock wave to describe the conditions behind the attenuating shock wave. This work furthers the understanding of shock transmission from an open-ended detonation tube and provides a theoretical framework to estimate the resulting conditions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00193-022-01086-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2555-6772</orcidid><orcidid>https://orcid.org/0000-0002-6814-3468</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0938-1287
ispartof Shock waves, 2022-07, Vol.32 (5), p.427-436
issn 0938-1287
1432-2153
language eng
recordid cdi_proquest_journals_2696497097
source Springer Nature
subjects Acoustic waves
Acoustics
Condensed Matter Physics
Deflagration
Detonation
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
First principles
Fluid- and Aerodynamics
Gas mixtures
Heat and Mass Transfer
Inert atmospheres
Normal shock waves
Original Article
Overpressure
Thermodynamics
title An experimental study of shock transmission from a detonation tube
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20experimental%20study%20of%20shock%20transmission%20from%20a%20detonation%20tube&rft.jtitle=Shock%20waves&rft.au=Thomas,%20J.%20C.&rft.date=2022-07-01&rft.volume=32&rft.issue=5&rft.spage=427&rft.epage=436&rft.pages=427-436&rft.issn=0938-1287&rft.eissn=1432-2153&rft_id=info:doi/10.1007/s00193-022-01086-2&rft_dat=%3Cproquest_cross%3E2696497097%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-4f49eefdf50d976476e4bf957980bd1e3f9eabaf3267d3969dcd498ebc13ef873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2696497097&rft_id=info:pmid/&rfr_iscdi=true