Loading…

Research on motion trajectory planning of the robotic arm of a robot

The emergence of robots has replaced repetitive manual labor, and good robotic arm route planning can effectively improve work efficiency. This paper briefly introduced the motion model and trajectory planning method of robotic arms. The motion trajectory of robot arms was optimized by the genetic a...

Full description

Saved in:
Bibliographic Details
Published in:Artificial life and robotics 2022-08, Vol.27 (3), p.561-567
Main Authors: Miao, Xinghua, Fu, Huansen, Song, Xiangqian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-8d6b52b9ccfe80438849977d1ab79cfbad062030ac722560e35cd1d621e190643
cites cdi_FETCH-LOGICAL-c319t-8d6b52b9ccfe80438849977d1ab79cfbad062030ac722560e35cd1d621e190643
container_end_page 567
container_issue 3
container_start_page 561
container_title Artificial life and robotics
container_volume 27
creator Miao, Xinghua
Fu, Huansen
Song, Xiangqian
description The emergence of robots has replaced repetitive manual labor, and good robotic arm route planning can effectively improve work efficiency. This paper briefly introduced the motion model and trajectory planning method of robotic arms. The motion trajectory of robot arms was optimized by the genetic algorithm-improved particle swarm optimization (PSO) algorithm, and simulation experiments were carried out. The results showed that the improved PSO algorithm converged faster and had the lowest fitness after stable convergence; the arm had continuous and smooth changes in angle, angular velocity and angular acceleration and consumed the shortest time while moving on the route planned by the improved particle swarm algorithm, and the improved PSO algorithm took the shortest time to compute the route.
doi_str_mv 10.1007/s10015-022-00779-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696689042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696689042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8d6b52b9ccfe80438849977d1ab79cfbad062030ac722560e35cd1d621e190643</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoHPAU8R18-mjRHWT9hQRA9hzRNd1u2zZp0D_vvTa3gzcub94aZeTAIXVO4pQDqLuVJCwKMkXwqTdgJWlBJBVGikKd5F5yTgunyHF2k1AEIBZIv0MO7T95Gt8VhwH0Y2wxjtJ13Y4hHvN_ZYWiHDQ4NHrcex1BljcM29hNlZ-ISnTV2l_zVLy7R59Pjx-qFrN-eX1f3a-I41SMpa1kVrNLONb4EwctSaK1UTW2ltGsqW4NkwME6xVghwfPC1bSWjHqqQQq-RDdz7j6Gr4NPo-nCIQ75pWFSS1lqECyr2KxyMaQUfWP2se1tPBoKZmrLzG2Z3Jb5actMJj6bUhYPGx__ov9xfQNUNWu4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696689042</pqid></control><display><type>article</type><title>Research on motion trajectory planning of the robotic arm of a robot</title><source>Springer Nature</source><creator>Miao, Xinghua ; Fu, Huansen ; Song, Xiangqian</creator><creatorcontrib>Miao, Xinghua ; Fu, Huansen ; Song, Xiangqian</creatorcontrib><description>The emergence of robots has replaced repetitive manual labor, and good robotic arm route planning can effectively improve work efficiency. This paper briefly introduced the motion model and trajectory planning method of robotic arms. The motion trajectory of robot arms was optimized by the genetic algorithm-improved particle swarm optimization (PSO) algorithm, and simulation experiments were carried out. The results showed that the improved PSO algorithm converged faster and had the lowest fitness after stable convergence; the arm had continuous and smooth changes in angle, angular velocity and angular acceleration and consumed the shortest time while moving on the route planned by the improved particle swarm algorithm, and the improved PSO algorithm took the shortest time to compute the route.</description><identifier>ISSN: 1433-5298</identifier><identifier>EISSN: 1614-7456</identifier><identifier>DOI: 10.1007/s10015-022-00779-2</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Angular acceleration ; Angular velocity ; Artificial Intelligence ; Computation by Abstract Devices ; Computer Science ; Control ; Convergence ; Genetic algorithms ; Mechatronics ; Original Article ; Particle swarm optimization ; Physical work ; Robot arms ; Robot dynamics ; Robotics ; Route planning ; Trajectory planning</subject><ispartof>Artificial life and robotics, 2022-08, Vol.27 (3), p.561-567</ispartof><rights>International Society of Artificial Life and Robotics (ISAROB) 2022</rights><rights>International Society of Artificial Life and Robotics (ISAROB) 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8d6b52b9ccfe80438849977d1ab79cfbad062030ac722560e35cd1d621e190643</citedby><cites>FETCH-LOGICAL-c319t-8d6b52b9ccfe80438849977d1ab79cfbad062030ac722560e35cd1d621e190643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Miao, Xinghua</creatorcontrib><creatorcontrib>Fu, Huansen</creatorcontrib><creatorcontrib>Song, Xiangqian</creatorcontrib><title>Research on motion trajectory planning of the robotic arm of a robot</title><title>Artificial life and robotics</title><addtitle>Artif Life Robotics</addtitle><description>The emergence of robots has replaced repetitive manual labor, and good robotic arm route planning can effectively improve work efficiency. This paper briefly introduced the motion model and trajectory planning method of robotic arms. The motion trajectory of robot arms was optimized by the genetic algorithm-improved particle swarm optimization (PSO) algorithm, and simulation experiments were carried out. The results showed that the improved PSO algorithm converged faster and had the lowest fitness after stable convergence; the arm had continuous and smooth changes in angle, angular velocity and angular acceleration and consumed the shortest time while moving on the route planned by the improved particle swarm algorithm, and the improved PSO algorithm took the shortest time to compute the route.</description><subject>Angular acceleration</subject><subject>Angular velocity</subject><subject>Artificial Intelligence</subject><subject>Computation by Abstract Devices</subject><subject>Computer Science</subject><subject>Control</subject><subject>Convergence</subject><subject>Genetic algorithms</subject><subject>Mechatronics</subject><subject>Original Article</subject><subject>Particle swarm optimization</subject><subject>Physical work</subject><subject>Robot arms</subject><subject>Robot dynamics</subject><subject>Robotics</subject><subject>Route planning</subject><subject>Trajectory planning</subject><issn>1433-5298</issn><issn>1614-7456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoHPAU8R18-mjRHWT9hQRA9hzRNd1u2zZp0D_vvTa3gzcub94aZeTAIXVO4pQDqLuVJCwKMkXwqTdgJWlBJBVGikKd5F5yTgunyHF2k1AEIBZIv0MO7T95Gt8VhwH0Y2wxjtJ13Y4hHvN_ZYWiHDQ4NHrcex1BljcM29hNlZ-ISnTV2l_zVLy7R59Pjx-qFrN-eX1f3a-I41SMpa1kVrNLONb4EwctSaK1UTW2ltGsqW4NkwME6xVghwfPC1bSWjHqqQQq-RDdz7j6Gr4NPo-nCIQ75pWFSS1lqECyr2KxyMaQUfWP2se1tPBoKZmrLzG2Z3Jb5actMJj6bUhYPGx__ov9xfQNUNWu4</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Miao, Xinghua</creator><creator>Fu, Huansen</creator><creator>Song, Xiangqian</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220801</creationdate><title>Research on motion trajectory planning of the robotic arm of a robot</title><author>Miao, Xinghua ; Fu, Huansen ; Song, Xiangqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8d6b52b9ccfe80438849977d1ab79cfbad062030ac722560e35cd1d621e190643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Angular acceleration</topic><topic>Angular velocity</topic><topic>Artificial Intelligence</topic><topic>Computation by Abstract Devices</topic><topic>Computer Science</topic><topic>Control</topic><topic>Convergence</topic><topic>Genetic algorithms</topic><topic>Mechatronics</topic><topic>Original Article</topic><topic>Particle swarm optimization</topic><topic>Physical work</topic><topic>Robot arms</topic><topic>Robot dynamics</topic><topic>Robotics</topic><topic>Route planning</topic><topic>Trajectory planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Xinghua</creatorcontrib><creatorcontrib>Fu, Huansen</creatorcontrib><creatorcontrib>Song, Xiangqian</creatorcontrib><collection>CrossRef</collection><jtitle>Artificial life and robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Xinghua</au><au>Fu, Huansen</au><au>Song, Xiangqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on motion trajectory planning of the robotic arm of a robot</atitle><jtitle>Artificial life and robotics</jtitle><stitle>Artif Life Robotics</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>27</volume><issue>3</issue><spage>561</spage><epage>567</epage><pages>561-567</pages><issn>1433-5298</issn><eissn>1614-7456</eissn><abstract>The emergence of robots has replaced repetitive manual labor, and good robotic arm route planning can effectively improve work efficiency. This paper briefly introduced the motion model and trajectory planning method of robotic arms. The motion trajectory of robot arms was optimized by the genetic algorithm-improved particle swarm optimization (PSO) algorithm, and simulation experiments were carried out. The results showed that the improved PSO algorithm converged faster and had the lowest fitness after stable convergence; the arm had continuous and smooth changes in angle, angular velocity and angular acceleration and consumed the shortest time while moving on the route planned by the improved particle swarm algorithm, and the improved PSO algorithm took the shortest time to compute the route.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10015-022-00779-2</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1433-5298
ispartof Artificial life and robotics, 2022-08, Vol.27 (3), p.561-567
issn 1433-5298
1614-7456
language eng
recordid cdi_proquest_journals_2696689042
source Springer Nature
subjects Angular acceleration
Angular velocity
Artificial Intelligence
Computation by Abstract Devices
Computer Science
Control
Convergence
Genetic algorithms
Mechatronics
Original Article
Particle swarm optimization
Physical work
Robot arms
Robot dynamics
Robotics
Route planning
Trajectory planning
title Research on motion trajectory planning of the robotic arm of a robot
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A23%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20motion%20trajectory%20planning%20of%20the%20robotic%20arm%20of%20a%20robot&rft.jtitle=Artificial%20life%20and%20robotics&rft.au=Miao,%20Xinghua&rft.date=2022-08-01&rft.volume=27&rft.issue=3&rft.spage=561&rft.epage=567&rft.pages=561-567&rft.issn=1433-5298&rft.eissn=1614-7456&rft_id=info:doi/10.1007/s10015-022-00779-2&rft_dat=%3Cproquest_cross%3E2696689042%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-8d6b52b9ccfe80438849977d1ab79cfbad062030ac722560e35cd1d621e190643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2696689042&rft_id=info:pmid/&rfr_iscdi=true