Loading…
Research on motion trajectory planning of the robotic arm of a robot
The emergence of robots has replaced repetitive manual labor, and good robotic arm route planning can effectively improve work efficiency. This paper briefly introduced the motion model and trajectory planning method of robotic arms. The motion trajectory of robot arms was optimized by the genetic a...
Saved in:
Published in: | Artificial life and robotics 2022-08, Vol.27 (3), p.561-567 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-8d6b52b9ccfe80438849977d1ab79cfbad062030ac722560e35cd1d621e190643 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-8d6b52b9ccfe80438849977d1ab79cfbad062030ac722560e35cd1d621e190643 |
container_end_page | 567 |
container_issue | 3 |
container_start_page | 561 |
container_title | Artificial life and robotics |
container_volume | 27 |
creator | Miao, Xinghua Fu, Huansen Song, Xiangqian |
description | The emergence of robots has replaced repetitive manual labor, and good robotic arm route planning can effectively improve work efficiency. This paper briefly introduced the motion model and trajectory planning method of robotic arms. The motion trajectory of robot arms was optimized by the genetic algorithm-improved particle swarm optimization (PSO) algorithm, and simulation experiments were carried out. The results showed that the improved PSO algorithm converged faster and had the lowest fitness after stable convergence; the arm had continuous and smooth changes in angle, angular velocity and angular acceleration and consumed the shortest time while moving on the route planned by the improved particle swarm algorithm, and the improved PSO algorithm took the shortest time to compute the route. |
doi_str_mv | 10.1007/s10015-022-00779-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696689042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696689042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8d6b52b9ccfe80438849977d1ab79cfbad062030ac722560e35cd1d621e190643</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoHPAU8R18-mjRHWT9hQRA9hzRNd1u2zZp0D_vvTa3gzcub94aZeTAIXVO4pQDqLuVJCwKMkXwqTdgJWlBJBVGikKd5F5yTgunyHF2k1AEIBZIv0MO7T95Gt8VhwH0Y2wxjtJ13Y4hHvN_ZYWiHDQ4NHrcex1BljcM29hNlZ-ISnTV2l_zVLy7R59Pjx-qFrN-eX1f3a-I41SMpa1kVrNLONb4EwctSaK1UTW2ltGsqW4NkwME6xVghwfPC1bSWjHqqQQq-RDdz7j6Gr4NPo-nCIQ75pWFSS1lqECyr2KxyMaQUfWP2se1tPBoKZmrLzG2Z3Jb5actMJj6bUhYPGx__ov9xfQNUNWu4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696689042</pqid></control><display><type>article</type><title>Research on motion trajectory planning of the robotic arm of a robot</title><source>Springer Nature</source><creator>Miao, Xinghua ; Fu, Huansen ; Song, Xiangqian</creator><creatorcontrib>Miao, Xinghua ; Fu, Huansen ; Song, Xiangqian</creatorcontrib><description>The emergence of robots has replaced repetitive manual labor, and good robotic arm route planning can effectively improve work efficiency. This paper briefly introduced the motion model and trajectory planning method of robotic arms. The motion trajectory of robot arms was optimized by the genetic algorithm-improved particle swarm optimization (PSO) algorithm, and simulation experiments were carried out. The results showed that the improved PSO algorithm converged faster and had the lowest fitness after stable convergence; the arm had continuous and smooth changes in angle, angular velocity and angular acceleration and consumed the shortest time while moving on the route planned by the improved particle swarm algorithm, and the improved PSO algorithm took the shortest time to compute the route.</description><identifier>ISSN: 1433-5298</identifier><identifier>EISSN: 1614-7456</identifier><identifier>DOI: 10.1007/s10015-022-00779-2</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Angular acceleration ; Angular velocity ; Artificial Intelligence ; Computation by Abstract Devices ; Computer Science ; Control ; Convergence ; Genetic algorithms ; Mechatronics ; Original Article ; Particle swarm optimization ; Physical work ; Robot arms ; Robot dynamics ; Robotics ; Route planning ; Trajectory planning</subject><ispartof>Artificial life and robotics, 2022-08, Vol.27 (3), p.561-567</ispartof><rights>International Society of Artificial Life and Robotics (ISAROB) 2022</rights><rights>International Society of Artificial Life and Robotics (ISAROB) 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8d6b52b9ccfe80438849977d1ab79cfbad062030ac722560e35cd1d621e190643</citedby><cites>FETCH-LOGICAL-c319t-8d6b52b9ccfe80438849977d1ab79cfbad062030ac722560e35cd1d621e190643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Miao, Xinghua</creatorcontrib><creatorcontrib>Fu, Huansen</creatorcontrib><creatorcontrib>Song, Xiangqian</creatorcontrib><title>Research on motion trajectory planning of the robotic arm of a robot</title><title>Artificial life and robotics</title><addtitle>Artif Life Robotics</addtitle><description>The emergence of robots has replaced repetitive manual labor, and good robotic arm route planning can effectively improve work efficiency. This paper briefly introduced the motion model and trajectory planning method of robotic arms. The motion trajectory of robot arms was optimized by the genetic algorithm-improved particle swarm optimization (PSO) algorithm, and simulation experiments were carried out. The results showed that the improved PSO algorithm converged faster and had the lowest fitness after stable convergence; the arm had continuous and smooth changes in angle, angular velocity and angular acceleration and consumed the shortest time while moving on the route planned by the improved particle swarm algorithm, and the improved PSO algorithm took the shortest time to compute the route.</description><subject>Angular acceleration</subject><subject>Angular velocity</subject><subject>Artificial Intelligence</subject><subject>Computation by Abstract Devices</subject><subject>Computer Science</subject><subject>Control</subject><subject>Convergence</subject><subject>Genetic algorithms</subject><subject>Mechatronics</subject><subject>Original Article</subject><subject>Particle swarm optimization</subject><subject>Physical work</subject><subject>Robot arms</subject><subject>Robot dynamics</subject><subject>Robotics</subject><subject>Route planning</subject><subject>Trajectory planning</subject><issn>1433-5298</issn><issn>1614-7456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoHPAU8R18-mjRHWT9hQRA9hzRNd1u2zZp0D_vvTa3gzcub94aZeTAIXVO4pQDqLuVJCwKMkXwqTdgJWlBJBVGikKd5F5yTgunyHF2k1AEIBZIv0MO7T95Gt8VhwH0Y2wxjtJ13Y4hHvN_ZYWiHDQ4NHrcex1BljcM29hNlZ-ISnTV2l_zVLy7R59Pjx-qFrN-eX1f3a-I41SMpa1kVrNLONb4EwctSaK1UTW2ltGsqW4NkwME6xVghwfPC1bSWjHqqQQq-RDdz7j6Gr4NPo-nCIQ75pWFSS1lqECyr2KxyMaQUfWP2se1tPBoKZmrLzG2Z3Jb5actMJj6bUhYPGx__ov9xfQNUNWu4</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Miao, Xinghua</creator><creator>Fu, Huansen</creator><creator>Song, Xiangqian</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220801</creationdate><title>Research on motion trajectory planning of the robotic arm of a robot</title><author>Miao, Xinghua ; Fu, Huansen ; Song, Xiangqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8d6b52b9ccfe80438849977d1ab79cfbad062030ac722560e35cd1d621e190643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Angular acceleration</topic><topic>Angular velocity</topic><topic>Artificial Intelligence</topic><topic>Computation by Abstract Devices</topic><topic>Computer Science</topic><topic>Control</topic><topic>Convergence</topic><topic>Genetic algorithms</topic><topic>Mechatronics</topic><topic>Original Article</topic><topic>Particle swarm optimization</topic><topic>Physical work</topic><topic>Robot arms</topic><topic>Robot dynamics</topic><topic>Robotics</topic><topic>Route planning</topic><topic>Trajectory planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Xinghua</creatorcontrib><creatorcontrib>Fu, Huansen</creatorcontrib><creatorcontrib>Song, Xiangqian</creatorcontrib><collection>CrossRef</collection><jtitle>Artificial life and robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Xinghua</au><au>Fu, Huansen</au><au>Song, Xiangqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on motion trajectory planning of the robotic arm of a robot</atitle><jtitle>Artificial life and robotics</jtitle><stitle>Artif Life Robotics</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>27</volume><issue>3</issue><spage>561</spage><epage>567</epage><pages>561-567</pages><issn>1433-5298</issn><eissn>1614-7456</eissn><abstract>The emergence of robots has replaced repetitive manual labor, and good robotic arm route planning can effectively improve work efficiency. This paper briefly introduced the motion model and trajectory planning method of robotic arms. The motion trajectory of robot arms was optimized by the genetic algorithm-improved particle swarm optimization (PSO) algorithm, and simulation experiments were carried out. The results showed that the improved PSO algorithm converged faster and had the lowest fitness after stable convergence; the arm had continuous and smooth changes in angle, angular velocity and angular acceleration and consumed the shortest time while moving on the route planned by the improved particle swarm algorithm, and the improved PSO algorithm took the shortest time to compute the route.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10015-022-00779-2</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-5298 |
ispartof | Artificial life and robotics, 2022-08, Vol.27 (3), p.561-567 |
issn | 1433-5298 1614-7456 |
language | eng |
recordid | cdi_proquest_journals_2696689042 |
source | Springer Nature |
subjects | Angular acceleration Angular velocity Artificial Intelligence Computation by Abstract Devices Computer Science Control Convergence Genetic algorithms Mechatronics Original Article Particle swarm optimization Physical work Robot arms Robot dynamics Robotics Route planning Trajectory planning |
title | Research on motion trajectory planning of the robotic arm of a robot |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A23%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20motion%20trajectory%20planning%20of%20the%20robotic%20arm%20of%20a%20robot&rft.jtitle=Artificial%20life%20and%20robotics&rft.au=Miao,%20Xinghua&rft.date=2022-08-01&rft.volume=27&rft.issue=3&rft.spage=561&rft.epage=567&rft.pages=561-567&rft.issn=1433-5298&rft.eissn=1614-7456&rft_id=info:doi/10.1007/s10015-022-00779-2&rft_dat=%3Cproquest_cross%3E2696689042%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-8d6b52b9ccfe80438849977d1ab79cfbad062030ac722560e35cd1d621e190643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2696689042&rft_id=info:pmid/&rfr_iscdi=true |