Loading…
The Enhanced Forensic Examination and Analysis for Mobile Cloud Platform by Applying Data Mining Methods
Investigating the mobile cloud environment is a challenging task due to the characteristics of voluminous data, dispersion of data, virtualization, and diverse data. Recent research works focus on applying the latest forensic methodologies to the mobile cloud investigation. This paper proposes an en...
Saved in:
Published in: | Webology 2021, Vol.18 (SI01), p.47-74 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2436-ccffd78d68263468dafd25b1b806f877de85f116a6ec5a8516fdf1e2a31983d13 |
---|---|
cites | |
container_end_page | 74 |
container_issue | SI01 |
container_start_page | 47 |
container_title | Webology |
container_volume | 18 |
creator | Alnajjar, Ibrahim Ali Mahmuddin, Massudi |
description | Investigating the mobile cloud environment is a challenging task due to the characteristics of voluminous data, dispersion of data, virtualization, and diverse data. Recent research works focus on applying the latest forensic methodologies to the mobile cloud investigation. This paper proposes an enhanced forensic examination and analysis model for the mobile cloud environment that incorporates timeline analysis, hash filtering, data carving, and data transformation sub-phases to improve the performance of the cloud evidence identification and overall forensic decision-making. It analyzes the timeline of events and filters the case-specific files based on the hash values and metadata using the data mining methods. The proposed forensic model performs the in-place carving on the filtered data to guide the investigation and integrates the heterogeneous file types and distributed pieces of evidence with the assistance of the data mining. Finally, the proposed approach employs LSTM based model that significantly improves the forensic decision making. |
doi_str_mv | 10.14704/WEB/V18SI01/WEB18006 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2696902224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696902224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2436-ccffd78d68263468dafd25b1b806f877de85f116a6ec5a8516fdf1e2a31983d13</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKs_QQh4XZekbZpdztnpYEPB-XEX0iaxGV1Skw7sv7dzE7w6D4fDeV8eAK4xusVpjtLxe3E3fsPsZYHwnjFDiJ6AEc6TLMaMfZz-43NwEcIGoTQlCI1Ava4VLGwtbKUknDuvbDAVLL7F1ljRGWehsBJOrWj6YALUzsOVK02j4KxxOwmfG9ENyy0sezht26Y39hPei07AlbF7XqmudjJcgjMtmqCujjMCr_NiPXuMl08Pi9l0GVckTWhcVVrLnEnKCE1SyqTQkmQlLhmimuW5VCzTGFNBVZUJlmGqpcaKiARPWCJxEoGbw9_Wu6-dCh3fuJ0f6gdO6IROECFDUASyw1XlXQhead56sxW-5xjxX6l8EMmPUvmf1OQHk2trzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696902224</pqid></control><display><type>article</type><title>The Enhanced Forensic Examination and Analysis for Mobile Cloud Platform by Applying Data Mining Methods</title><source>Library & Information Science Abstracts (LISA)</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><source>Library & Information Science Collection</source><creator>Alnajjar, Ibrahim Ali ; Mahmuddin, Massudi</creator><creatorcontrib>Alnajjar, Ibrahim Ali ; Mahmuddin, Massudi</creatorcontrib><description>Investigating the mobile cloud environment is a challenging task due to the characteristics of voluminous data, dispersion of data, virtualization, and diverse data. Recent research works focus on applying the latest forensic methodologies to the mobile cloud investigation. This paper proposes an enhanced forensic examination and analysis model for the mobile cloud environment that incorporates timeline analysis, hash filtering, data carving, and data transformation sub-phases to improve the performance of the cloud evidence identification and overall forensic decision-making. It analyzes the timeline of events and filters the case-specific files based on the hash values and metadata using the data mining methods. The proposed forensic model performs the in-place carving on the filtered data to guide the investigation and integrates the heterogeneous file types and distributed pieces of evidence with the assistance of the data mining. Finally, the proposed approach employs LSTM based model that significantly improves the forensic decision making.</description><identifier>ISSN: 1735-188X</identifier><identifier>EISSN: 1735-188X</identifier><identifier>DOI: 10.14704/WEB/V18SI01/WEB18006</identifier><language>eng</language><publisher>Tehran: Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</publisher><subject>Cloud computing ; Computer forensics ; Crime ; Criminal investigations ; Data mining ; Decision making ; Evidence ; Forensic sciences ; Internet access ; Malware ; Smartphones ; Text messaging</subject><ispartof>Webology, 2021, Vol.18 (SI01), p.47-74</ispartof><rights>Copyright Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science Jan 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2436-ccffd78d68263468dafd25b1b806f877de85f116a6ec5a8516fdf1e2a31983d13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2696902224/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2696902224?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,4024,21381,21394,27305,27923,27924,27925,33611,33906,34135,43733,43892,74221,74409</link.rule.ids></links><search><creatorcontrib>Alnajjar, Ibrahim Ali</creatorcontrib><creatorcontrib>Mahmuddin, Massudi</creatorcontrib><title>The Enhanced Forensic Examination and Analysis for Mobile Cloud Platform by Applying Data Mining Methods</title><title>Webology</title><description>Investigating the mobile cloud environment is a challenging task due to the characteristics of voluminous data, dispersion of data, virtualization, and diverse data. Recent research works focus on applying the latest forensic methodologies to the mobile cloud investigation. This paper proposes an enhanced forensic examination and analysis model for the mobile cloud environment that incorporates timeline analysis, hash filtering, data carving, and data transformation sub-phases to improve the performance of the cloud evidence identification and overall forensic decision-making. It analyzes the timeline of events and filters the case-specific files based on the hash values and metadata using the data mining methods. The proposed forensic model performs the in-place carving on the filtered data to guide the investigation and integrates the heterogeneous file types and distributed pieces of evidence with the assistance of the data mining. Finally, the proposed approach employs LSTM based model that significantly improves the forensic decision making.</description><subject>Cloud computing</subject><subject>Computer forensics</subject><subject>Crime</subject><subject>Criminal investigations</subject><subject>Data mining</subject><subject>Decision making</subject><subject>Evidence</subject><subject>Forensic sciences</subject><subject>Internet access</subject><subject>Malware</subject><subject>Smartphones</subject><subject>Text messaging</subject><issn>1735-188X</issn><issn>1735-188X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ALSLI</sourceid><sourceid>CNYFK</sourceid><sourceid>F2A</sourceid><sourceid>M1O</sourceid><recordid>eNpNkF1LwzAUhoMoOKs_QQh4XZekbZpdztnpYEPB-XEX0iaxGV1Skw7sv7dzE7w6D4fDeV8eAK4xusVpjtLxe3E3fsPsZYHwnjFDiJ6AEc6TLMaMfZz-43NwEcIGoTQlCI1Ava4VLGwtbKUknDuvbDAVLL7F1ljRGWehsBJOrWj6YALUzsOVK02j4KxxOwmfG9ENyy0sezht26Y39hPei07AlbF7XqmudjJcgjMtmqCujjMCr_NiPXuMl08Pi9l0GVckTWhcVVrLnEnKCE1SyqTQkmQlLhmimuW5VCzTGFNBVZUJlmGqpcaKiARPWCJxEoGbw9_Wu6-dCh3fuJ0f6gdO6IROECFDUASyw1XlXQhead56sxW-5xjxX6l8EMmPUvmf1OQHk2trzg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Alnajjar, Ibrahim Ali</creator><creator>Mahmuddin, Massudi</creator><general>Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>M1O</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2021</creationdate><title>The Enhanced Forensic Examination and Analysis for Mobile Cloud Platform by Applying Data Mining Methods</title><author>Alnajjar, Ibrahim Ali ; Mahmuddin, Massudi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2436-ccffd78d68263468dafd25b1b806f877de85f116a6ec5a8516fdf1e2a31983d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cloud computing</topic><topic>Computer forensics</topic><topic>Crime</topic><topic>Criminal investigations</topic><topic>Data mining</topic><topic>Decision making</topic><topic>Evidence</topic><topic>Forensic sciences</topic><topic>Internet access</topic><topic>Malware</topic><topic>Smartphones</topic><topic>Text messaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alnajjar, Ibrahim Ali</creatorcontrib><creatorcontrib>Mahmuddin, Massudi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Library Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Webology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alnajjar, Ibrahim Ali</au><au>Mahmuddin, Massudi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Enhanced Forensic Examination and Analysis for Mobile Cloud Platform by Applying Data Mining Methods</atitle><jtitle>Webology</jtitle><date>2021</date><risdate>2021</risdate><volume>18</volume><issue>SI01</issue><spage>47</spage><epage>74</epage><pages>47-74</pages><issn>1735-188X</issn><eissn>1735-188X</eissn><abstract>Investigating the mobile cloud environment is a challenging task due to the characteristics of voluminous data, dispersion of data, virtualization, and diverse data. Recent research works focus on applying the latest forensic methodologies to the mobile cloud investigation. This paper proposes an enhanced forensic examination and analysis model for the mobile cloud environment that incorporates timeline analysis, hash filtering, data carving, and data transformation sub-phases to improve the performance of the cloud evidence identification and overall forensic decision-making. It analyzes the timeline of events and filters the case-specific files based on the hash values and metadata using the data mining methods. The proposed forensic model performs the in-place carving on the filtered data to guide the investigation and integrates the heterogeneous file types and distributed pieces of evidence with the assistance of the data mining. Finally, the proposed approach employs LSTM based model that significantly improves the forensic decision making.</abstract><cop>Tehran</cop><pub>Dr. Alireza Noruzi, University of Tehran, Department of Library and Information Science</pub><doi>10.14704/WEB/V18SI01/WEB18006</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1735-188X |
ispartof | Webology, 2021, Vol.18 (SI01), p.47-74 |
issn | 1735-188X 1735-188X |
language | eng |
recordid | cdi_proquest_journals_2696902224 |
source | Library & Information Science Abstracts (LISA); Social Science Premium Collection (Proquest) (PQ_SDU_P3); Library & Information Science Collection |
subjects | Cloud computing Computer forensics Crime Criminal investigations Data mining Decision making Evidence Forensic sciences Internet access Malware Smartphones Text messaging |
title | The Enhanced Forensic Examination and Analysis for Mobile Cloud Platform by Applying Data Mining Methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Enhanced%20Forensic%20Examination%20and%20Analysis%20for%20Mobile%20Cloud%20Platform%20by%20Applying%20Data%20Mining%20Methods&rft.jtitle=Webology&rft.au=Alnajjar,%20Ibrahim%20Ali&rft.date=2021&rft.volume=18&rft.issue=SI01&rft.spage=47&rft.epage=74&rft.pages=47-74&rft.issn=1735-188X&rft.eissn=1735-188X&rft_id=info:doi/10.14704/WEB/V18SI01/WEB18006&rft_dat=%3Cproquest_cross%3E2696902224%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2436-ccffd78d68263468dafd25b1b806f877de85f116a6ec5a8516fdf1e2a31983d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2696902224&rft_id=info:pmid/&rfr_iscdi=true |