Loading…

URL Phishing Detection Using Particle Swarm Optimization and Data Mining

The continuous destruction and frauds prevailing due to phishing URLs make it an indispensable area for research. Various techniques are adopted in the detection process, including neural networks, machine learning, or hybrid techniques. A novel detection model is proposed that uses data mining with...

Full description

Saved in:
Bibliographic Details
Published in:Computers, materials & continua materials & continua, 2022-01, Vol.73 (3), p.5625
Main Authors: Alshahrani, Saeed M, Nayyar Ahmed Khan, Almalki, Jameel, Waleed Al Shehri
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The continuous destruction and frauds prevailing due to phishing URLs make it an indispensable area for research. Various techniques are adopted in the detection process, including neural networks, machine learning, or hybrid techniques. A novel detection model is proposed that uses data mining with the Particle Swarm Optimization technique (PSO) to increase and empower the method of detecting phishing URLs. Feature selection based on various techniques to identify the phishing candidates from the URL is conducted. In this approach, the features mined from the URL are extracted using data mining rules. The features are selected on the basis of URL structure. The classification of these features identified by the data mining rules is done using PSO techniques. The selection of features with PSO optimization makes it possible to identify phishing URLs. Using a large number of rule identifiers, the true positive rate for the identification of phishing URLs is maximized in this approach. The experiments show that feature selection using data mining and particle swarm optimization helps tremendously identify the phishing URLs based on the structure of the URL itself. Moreover, it can minimize processing time for identifying the phishing website instead. So, the approach can be beneficial to identify such URLs over the existing contemporary detecting models proposed before.
ISSN:1546-2218
1546-2226
DOI:10.32604/cmc.2022.030982