Loading…

Analysis and Computation of Multidimensional Linear Complexity of Periodic Arrays

Linear complexity is an important parameter for arrays that are used in applications related to information security. In this work we survey constructions of two and three dimensional arrays, and present new results on the multidimensional linear complexity of periodic arrays obtained using the defi...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-07
Main Authors: Arce, Rafael, Hernández, Carlos, Ortiz, José, Rubio, Ivelisse, Torres, Jaziel
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Arce, Rafael
Hernández, Carlos
Ortiz, José
Rubio, Ivelisse
Torres, Jaziel
description Linear complexity is an important parameter for arrays that are used in applications related to information security. In this work we survey constructions of two and three dimensional arrays, and present new results on the multidimensional linear complexity of periodic arrays obtained using the definition and method proposed in \cite{ArCaGoMoOrRuTi,GoHoMoRu,MoHoRu}. The results include a generalization of a bound for the linear complexity, a comparison with the measure of complexity for multisequences, and computations of the complexity of arrays with periods that are not relatively prime for which the ``unfolding method'' does not work. Conjectures for exact formulas and the asymptotic behavior of the complexity of some array constructions are formulated. We also present open source software for constructing multidimensional arrays and for computing their multidimensional linear complexity.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2696969100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696969100</sourcerecordid><originalsourceid>FETCH-proquest_journals_26969691003</originalsourceid><addsrcrecordid>eNqNzNEKgjAYBeARBEn5DoOuhbmp1aVI0UVBQfcycsIvc7P9G-Tbp9EDxLk4cPg4CxJxIdJkn3G-IjFixxjjxY7nuYjIvTRSjwhIpWloZfsheOnBGmpbeg3aQwO9MjgtUtMLGCXdl2n1Bj_O6qYc2AaetHROjrghy1ZqVPGv12R7Oj6qczI4-woKfd3Z4KY3rHlxmJMyJv5TH-bDP9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696969100</pqid></control><display><type>article</type><title>Analysis and Computation of Multidimensional Linear Complexity of Periodic Arrays</title><source>Publicly Available Content Database</source><creator>Arce, Rafael ; Hernández, Carlos ; Ortiz, José ; Rubio, Ivelisse ; Torres, Jaziel</creator><creatorcontrib>Arce, Rafael ; Hernández, Carlos ; Ortiz, José ; Rubio, Ivelisse ; Torres, Jaziel</creatorcontrib><description>Linear complexity is an important parameter for arrays that are used in applications related to information security. In this work we survey constructions of two and three dimensional arrays, and present new results on the multidimensional linear complexity of periodic arrays obtained using the definition and method proposed in \cite{ArCaGoMoOrRuTi,GoHoMoRu,MoHoRu}. The results include a generalization of a bound for the linear complexity, a comparison with the measure of complexity for multisequences, and computations of the complexity of arrays with periods that are not relatively prime for which the ``unfolding method'' does not work. Conjectures for exact formulas and the asymptotic behavior of the complexity of some array constructions are formulated. We also present open source software for constructing multidimensional arrays and for computing their multidimensional linear complexity.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Arrays ; Asymptotic methods ; Asymptotic properties ; Complexity</subject><ispartof>arXiv.org, 2022-07</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2696969100?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Arce, Rafael</creatorcontrib><creatorcontrib>Hernández, Carlos</creatorcontrib><creatorcontrib>Ortiz, José</creatorcontrib><creatorcontrib>Rubio, Ivelisse</creatorcontrib><creatorcontrib>Torres, Jaziel</creatorcontrib><title>Analysis and Computation of Multidimensional Linear Complexity of Periodic Arrays</title><title>arXiv.org</title><description>Linear complexity is an important parameter for arrays that are used in applications related to information security. In this work we survey constructions of two and three dimensional arrays, and present new results on the multidimensional linear complexity of periodic arrays obtained using the definition and method proposed in \cite{ArCaGoMoOrRuTi,GoHoMoRu,MoHoRu}. The results include a generalization of a bound for the linear complexity, a comparison with the measure of complexity for multisequences, and computations of the complexity of arrays with periods that are not relatively prime for which the ``unfolding method'' does not work. Conjectures for exact formulas and the asymptotic behavior of the complexity of some array constructions are formulated. We also present open source software for constructing multidimensional arrays and for computing their multidimensional linear complexity.</description><subject>Arrays</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Complexity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzNEKgjAYBeARBEn5DoOuhbmp1aVI0UVBQfcycsIvc7P9G-Tbp9EDxLk4cPg4CxJxIdJkn3G-IjFixxjjxY7nuYjIvTRSjwhIpWloZfsheOnBGmpbeg3aQwO9MjgtUtMLGCXdl2n1Bj_O6qYc2AaetHROjrghy1ZqVPGv12R7Oj6qczI4-woKfd3Z4KY3rHlxmJMyJv5TH-bDP9I</recordid><startdate>20220728</startdate><enddate>20220728</enddate><creator>Arce, Rafael</creator><creator>Hernández, Carlos</creator><creator>Ortiz, José</creator><creator>Rubio, Ivelisse</creator><creator>Torres, Jaziel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220728</creationdate><title>Analysis and Computation of Multidimensional Linear Complexity of Periodic Arrays</title><author>Arce, Rafael ; Hernández, Carlos ; Ortiz, José ; Rubio, Ivelisse ; Torres, Jaziel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26969691003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arrays</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Complexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Arce, Rafael</creatorcontrib><creatorcontrib>Hernández, Carlos</creatorcontrib><creatorcontrib>Ortiz, José</creatorcontrib><creatorcontrib>Rubio, Ivelisse</creatorcontrib><creatorcontrib>Torres, Jaziel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arce, Rafael</au><au>Hernández, Carlos</au><au>Ortiz, José</au><au>Rubio, Ivelisse</au><au>Torres, Jaziel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Analysis and Computation of Multidimensional Linear Complexity of Periodic Arrays</atitle><jtitle>arXiv.org</jtitle><date>2022-07-28</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Linear complexity is an important parameter for arrays that are used in applications related to information security. In this work we survey constructions of two and three dimensional arrays, and present new results on the multidimensional linear complexity of periodic arrays obtained using the definition and method proposed in \cite{ArCaGoMoOrRuTi,GoHoMoRu,MoHoRu}. The results include a generalization of a bound for the linear complexity, a comparison with the measure of complexity for multisequences, and computations of the complexity of arrays with periods that are not relatively prime for which the ``unfolding method'' does not work. Conjectures for exact formulas and the asymptotic behavior of the complexity of some array constructions are formulated. We also present open source software for constructing multidimensional arrays and for computing their multidimensional linear complexity.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2696969100
source Publicly Available Content Database
subjects Arrays
Asymptotic methods
Asymptotic properties
Complexity
title Analysis and Computation of Multidimensional Linear Complexity of Periodic Arrays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Analysis%20and%20Computation%20of%20Multidimensional%20Linear%20Complexity%20of%20Periodic%20Arrays&rft.jtitle=arXiv.org&rft.au=Arce,%20Rafael&rft.date=2022-07-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2696969100%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26969691003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2696969100&rft_id=info:pmid/&rfr_iscdi=true