Loading…

Scale dependence of drilling predation in the Holocene of the northern Adriatic Sea across benthic habitats and nutrient regimes

Predation has strongly shaped past and modern marine ecosystems, but the scale dependency of patterns in drilling predation, the most widely used proxy for predator–prey interactions in the fossil record, is a matter of debate. To assess the effects of spatial and taxonomic scale on temporal trends...

Full description

Saved in:
Bibliographic Details
Published in:Paleobiology 2022-08, Vol.48 (3), p.462-479
Main Authors: Zuschin, Martin, Nawrot, Rafał, Dengg, Markus, Gallmetzer, Ivo, Haselmair, Alexandra, Wurzer, Sandra, Tomašových, Adam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Predation has strongly shaped past and modern marine ecosystems, but the scale dependency of patterns in drilling predation, the most widely used proxy for predator–prey interactions in the fossil record, is a matter of debate. To assess the effects of spatial and taxonomic scale on temporal trends in the drilling frequencies (DFs), we analyzed Holocene molluscan assemblages of different benthic habitats and nutrient regimes from the northern Adriatic shelf in a sequence-stratigraphic context. Although it has been postulated that low predation pressures facilitated the development of high-biomass epifaunal communities in the eastern, relatively oligotrophic portion of the northern Adriatic shelf, DFs reaching up to 30%–40% in the studied assemblage show that drilling predation levels are comparable to those typical of late Cenozoic ecosystems. DFs tend to increase from the transgressive systems tract (TST) into the highstand systems tract (HST) at the local scale, reflecting an increase in water depth by 20–40 m and a shift from infralittoral to circalittoral habitats over the past 10,000 years. As transgressive deposits are thicker at shallower locations and highstand deposits are thicker at deeper locations, a regional increase in DFs from TST to HST is evident only when these differences are accounted for. The increase in DF toward the HST can be recognized at the level of total assemblages, classes, and few abundant and widespread families, but it disappears at the level of genera and species because of their specific environmental requirements, leading to uneven or patchy distribution in space and time.
ISSN:0094-8373
1938-5331
DOI:10.1017/pab.2022.6