Loading…
Optimization for Bone Samples Embedded in Methyl Methacrylate
Our aim was to update a standard technique for embedding bone samples, with or without implants, using methyl methacrylate (MMA) to obtain reliable optical microscopy images from mineralized bone tissues and bone-implant interfaces. In addition, comparative studies were carried out using different t...
Saved in:
Published in: | Journal of Hard Tissue Biology 2022, Vol.31(3), pp.181-186 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Our aim was to update a standard technique for embedding bone samples, with or without implants, using methyl methacrylate (MMA) to obtain reliable optical microscopy images from mineralized bone tissues and bone-implant interfaces. In addition, comparative studies were carried out using different temperatures throughout the polymerization process. Twenty-two New Zealand rabbit calvaria and femur bone samples with or without implants were used. The samples were fixed in 10% buffered formalin, dehydrated in an ascending alcohol series, and infiltrated in methyl methacrylate solutions (I, II and III). The specimens were divided into three groups. Groups 1 and 2 were polymerized at 24°C ± 5°C, while Group 3 was polymerized at 60°C. Group 1 and 2 obtained homogeneous, transparent, crystalline polymerization. Group 3 presented multiple bubbles (ø 2 – 3 mm), depressions, folds and even rupture of the vial container. The MMA bone samples polymerized at room temperature, showed good embedded, low hardness index, thin cuts, and effective staining. |
---|---|
ISSN: | 1341-7649 1880-828X |
DOI: | 10.2485/jhtb.31.181 |