Loading…
The probabilistic model checker Storm
We present the probabilistic model checker Storm . Storm supports the analysis of discrete- and continuous-time variants of both Markov chains and Markov decision processes. Storm has three major distinguishing features. It supports multiple input languages for Markov models, including the Jani and...
Saved in:
Published in: | International journal on software tools for technology transfer 2022-08, Vol.24 (4), p.589-610 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-cdcbae047ee83d39c3866cc6bab9a4e13aaca499dc16a071f0ae75cac921e7223 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-cdcbae047ee83d39c3866cc6bab9a4e13aaca499dc16a071f0ae75cac921e7223 |
container_end_page | 610 |
container_issue | 4 |
container_start_page | 589 |
container_title | International journal on software tools for technology transfer |
container_volume | 24 |
creator | Hensel, Christian Junges, Sebastian Katoen, Joost-Pieter Quatmann, Tim Volk, Matthias |
description | We present the probabilistic model checker
Storm
.
Storm
supports the analysis of discrete- and continuous-time variants of both Markov chains and Markov decision processes.
Storm
has three major distinguishing features. It supports multiple input languages for Markov models, including the
Jani
and
Prism
modeling languages, dynamic fault trees, generalized stochastic Petri nets, and the probabilistic guarded command language. It has a modular setup in which solvers and symbolic engines can easily be exchanged. Its Python API allows for rapid prototyping by encapsulating
Storm
’s fast and scalable algorithms. This paper reports on the main features of
Storm
and explains how to effectively use them. A description is provided of the main distinguishing functionalities of
Storm
. Finally, an empirical evaluation of different configurations of
Storm
on the QComp 2019 benchmark set is presented. |
doi_str_mv | 10.1007/s10009-021-00633-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2697197132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2697197132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-cdcbae047ee83d39c3866cc6bab9a4e13aaca499dc16a071f0ae75cac921e7223</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwBThVQhwDTlKS5ogm_kmTODDOUeq6rKNdR9Id2KcnowhuSJbtw3vP1o-xcwFXAsBcx9TBcpCCA2il-O6ATUSeFmkKc_i7G3vMTmJcAQijjZ2wy8WSsk3oS182bROHBrOur6jNcEn4TiF7GfrQnbKj2reRzn7mlL3e3y1mj3z-_PA0u51zVFoNHCssPUFuiApVKYuq0BpRp3DrcxLKe_S5tRUK7cGIGjyZG_RopSAjpZqyizE3ffSxpTi4Vb8N63TSSW2NSKX2KjmqMPQxBqrdJjSdD59OgNvjcCMOl3C4bxxul0xqNMUkXr9R-Iv-x_UF61pivQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697197132</pqid></control><display><type>article</type><title>The probabilistic model checker Storm</title><source>Springer Nature</source><creator>Hensel, Christian ; Junges, Sebastian ; Katoen, Joost-Pieter ; Quatmann, Tim ; Volk, Matthias</creator><creatorcontrib>Hensel, Christian ; Junges, Sebastian ; Katoen, Joost-Pieter ; Quatmann, Tim ; Volk, Matthias</creatorcontrib><description>We present the probabilistic model checker
Storm
.
Storm
supports the analysis of discrete- and continuous-time variants of both Markov chains and Markov decision processes.
Storm
has three major distinguishing features. It supports multiple input languages for Markov models, including the
Jani
and
Prism
modeling languages, dynamic fault trees, generalized stochastic Petri nets, and the probabilistic guarded command language. It has a modular setup in which solvers and symbolic engines can easily be exchanged. Its Python API allows for rapid prototyping by encapsulating
Storm
’s fast and scalable algorithms. This paper reports on the main features of
Storm
and explains how to effectively use them. A description is provided of the main distinguishing functionalities of
Storm
. Finally, an empirical evaluation of different configurations of
Storm
on the QComp 2019 benchmark set is presented.</description><identifier>ISSN: 1433-2779</identifier><identifier>EISSN: 1433-2787</identifier><identifier>DOI: 10.1007/s10009-021-00633-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Awards & honors ; Command languages ; Competitions and Challenges ; Computer Science ; Empirical analysis ; Fault trees ; Languages ; Markov analysis ; Markov chains ; Petri nets ; Probabilistic models ; Probability theory ; Rapid prototyping ; Software Engineering ; Software Engineering/Programming and Operating Systems ; Theory of Computation</subject><ispartof>International journal on software tools for technology transfer, 2022-08, Vol.24 (4), p.589-610</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-cdcbae047ee83d39c3866cc6bab9a4e13aaca499dc16a071f0ae75cac921e7223</citedby><cites>FETCH-LOGICAL-c363t-cdcbae047ee83d39c3866cc6bab9a4e13aaca499dc16a071f0ae75cac921e7223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hensel, Christian</creatorcontrib><creatorcontrib>Junges, Sebastian</creatorcontrib><creatorcontrib>Katoen, Joost-Pieter</creatorcontrib><creatorcontrib>Quatmann, Tim</creatorcontrib><creatorcontrib>Volk, Matthias</creatorcontrib><title>The probabilistic model checker Storm</title><title>International journal on software tools for technology transfer</title><addtitle>Int J Softw Tools Technol Transfer</addtitle><description>We present the probabilistic model checker
Storm
.
Storm
supports the analysis of discrete- and continuous-time variants of both Markov chains and Markov decision processes.
Storm
has three major distinguishing features. It supports multiple input languages for Markov models, including the
Jani
and
Prism
modeling languages, dynamic fault trees, generalized stochastic Petri nets, and the probabilistic guarded command language. It has a modular setup in which solvers and symbolic engines can easily be exchanged. Its Python API allows for rapid prototyping by encapsulating
Storm
’s fast and scalable algorithms. This paper reports on the main features of
Storm
and explains how to effectively use them. A description is provided of the main distinguishing functionalities of
Storm
. Finally, an empirical evaluation of different configurations of
Storm
on the QComp 2019 benchmark set is presented.</description><subject>Algorithms</subject><subject>Awards & honors</subject><subject>Command languages</subject><subject>Competitions and Challenges</subject><subject>Computer Science</subject><subject>Empirical analysis</subject><subject>Fault trees</subject><subject>Languages</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Petri nets</subject><subject>Probabilistic models</subject><subject>Probability theory</subject><subject>Rapid prototyping</subject><subject>Software Engineering</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Theory of Computation</subject><issn>1433-2779</issn><issn>1433-2787</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwBThVQhwDTlKS5ogm_kmTODDOUeq6rKNdR9Id2KcnowhuSJbtw3vP1o-xcwFXAsBcx9TBcpCCA2il-O6ATUSeFmkKc_i7G3vMTmJcAQijjZ2wy8WSsk3oS182bROHBrOur6jNcEn4TiF7GfrQnbKj2reRzn7mlL3e3y1mj3z-_PA0u51zVFoNHCssPUFuiApVKYuq0BpRp3DrcxLKe_S5tRUK7cGIGjyZG_RopSAjpZqyizE3ffSxpTi4Vb8N63TSSW2NSKX2KjmqMPQxBqrdJjSdD59OgNvjcCMOl3C4bxxul0xqNMUkXr9R-Iv-x_UF61pivQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Hensel, Christian</creator><creator>Junges, Sebastian</creator><creator>Katoen, Joost-Pieter</creator><creator>Quatmann, Tim</creator><creator>Volk, Matthias</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220801</creationdate><title>The probabilistic model checker Storm</title><author>Hensel, Christian ; Junges, Sebastian ; Katoen, Joost-Pieter ; Quatmann, Tim ; Volk, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-cdcbae047ee83d39c3866cc6bab9a4e13aaca499dc16a071f0ae75cac921e7223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Awards & honors</topic><topic>Command languages</topic><topic>Competitions and Challenges</topic><topic>Computer Science</topic><topic>Empirical analysis</topic><topic>Fault trees</topic><topic>Languages</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Petri nets</topic><topic>Probabilistic models</topic><topic>Probability theory</topic><topic>Rapid prototyping</topic><topic>Software Engineering</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hensel, Christian</creatorcontrib><creatorcontrib>Junges, Sebastian</creatorcontrib><creatorcontrib>Katoen, Joost-Pieter</creatorcontrib><creatorcontrib>Quatmann, Tim</creatorcontrib><creatorcontrib>Volk, Matthias</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal on software tools for technology transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hensel, Christian</au><au>Junges, Sebastian</au><au>Katoen, Joost-Pieter</au><au>Quatmann, Tim</au><au>Volk, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The probabilistic model checker Storm</atitle><jtitle>International journal on software tools for technology transfer</jtitle><stitle>Int J Softw Tools Technol Transfer</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>24</volume><issue>4</issue><spage>589</spage><epage>610</epage><pages>589-610</pages><issn>1433-2779</issn><eissn>1433-2787</eissn><abstract>We present the probabilistic model checker
Storm
.
Storm
supports the analysis of discrete- and continuous-time variants of both Markov chains and Markov decision processes.
Storm
has three major distinguishing features. It supports multiple input languages for Markov models, including the
Jani
and
Prism
modeling languages, dynamic fault trees, generalized stochastic Petri nets, and the probabilistic guarded command language. It has a modular setup in which solvers and symbolic engines can easily be exchanged. Its Python API allows for rapid prototyping by encapsulating
Storm
’s fast and scalable algorithms. This paper reports on the main features of
Storm
and explains how to effectively use them. A description is provided of the main distinguishing functionalities of
Storm
. Finally, an empirical evaluation of different configurations of
Storm
on the QComp 2019 benchmark set is presented.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10009-021-00633-z</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-2779 |
ispartof | International journal on software tools for technology transfer, 2022-08, Vol.24 (4), p.589-610 |
issn | 1433-2779 1433-2787 |
language | eng |
recordid | cdi_proquest_journals_2697197132 |
source | Springer Nature |
subjects | Algorithms Awards & honors Command languages Competitions and Challenges Computer Science Empirical analysis Fault trees Languages Markov analysis Markov chains Petri nets Probabilistic models Probability theory Rapid prototyping Software Engineering Software Engineering/Programming and Operating Systems Theory of Computation |
title | The probabilistic model checker Storm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20probabilistic%20model%20checker%20Storm&rft.jtitle=International%20journal%20on%20software%20tools%20for%20technology%20transfer&rft.au=Hensel,%20Christian&rft.date=2022-08-01&rft.volume=24&rft.issue=4&rft.spage=589&rft.epage=610&rft.pages=589-610&rft.issn=1433-2779&rft.eissn=1433-2787&rft_id=info:doi/10.1007/s10009-021-00633-z&rft_dat=%3Cproquest_cross%3E2697197132%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-cdcbae047ee83d39c3866cc6bab9a4e13aaca499dc16a071f0ae75cac921e7223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2697197132&rft_id=info:pmid/&rfr_iscdi=true |