Loading…
Learning to generate Reliable Broadcast Algorithms
Modern distributed systems are supported by fault-tolerant algorithms, like Reliable Broadcast and Consensus, that assure the correct operation of the system even when some of the nodes of the system fail. However, the development of distributed algorithms is a manual and complex process, resulting...
Saved in:
Published in: | arXiv.org 2022-07 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Vaz, Diogo Matos, David R Pardal, Miguel L Correia, Miguel |
description | Modern distributed systems are supported by fault-tolerant algorithms, like Reliable Broadcast and Consensus, that assure the correct operation of the system even when some of the nodes of the system fail. However, the development of distributed algorithms is a manual and complex process, resulting in scientific papers that usually present a single algorithm or variations of existing ones. To automate the process of developing such algorithms, this work presents an intelligent agent that uses Reinforcement Learning to generate correct and efficient fault-tolerant distributed algorithms. We show that our approach is able to generate correct fault-tolerant Reliable Broadcast algorithms with the same performance of others available in the literature, in only 12,000 learning episodes. |
doi_str_mv | 10.48550/arxiv.2208.00525 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2697201404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2697201404</sourcerecordid><originalsourceid>FETCH-LOGICAL-a955-b2c2b046777203d8550c8d0540d66ad6ddc2e8992a048cd89c019bc5e387e823</originalsourceid><addsrcrecordid>eNotjstKw0AUQAdBsNR-gLsB14k3d97LWnxBQLDdl8nMNabEjM6k4udb0dXZnXMYu2qgllYpuPH5e_iqEcHWAArVGVugEE1lJeIFW5VyAADUBpUSC4Yt-TwNU8_nxHuaKPuZ-AuNg-9G4rc5-Rh8mfl67FMe5rf3csnOX_1YaPXPJdve3-02j1X7_PC0WbeVd0pVHQbsQGpjDIKIv2vBRlASotY-6hgDknUOPUgbonUBGtcFRcIasiiW7PrP-pHT55HKvD-kY55OwT1qd3I2EqT4ATEhRJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697201404</pqid></control><display><type>article</type><title>Learning to generate Reliable Broadcast Algorithms</title><source>Publicly Available Content (ProQuest)</source><creator>Vaz, Diogo ; Matos, David R ; Pardal, Miguel L ; Correia, Miguel</creator><creatorcontrib>Vaz, Diogo ; Matos, David R ; Pardal, Miguel L ; Correia, Miguel</creatorcontrib><description>Modern distributed systems are supported by fault-tolerant algorithms, like Reliable Broadcast and Consensus, that assure the correct operation of the system even when some of the nodes of the system fail. However, the development of distributed algorithms is a manual and complex process, resulting in scientific papers that usually present a single algorithm or variations of existing ones. To automate the process of developing such algorithms, this work presents an intelligent agent that uses Reinforcement Learning to generate correct and efficient fault-tolerant distributed algorithms. We show that our approach is able to generate correct fault-tolerant Reliable Broadcast algorithms with the same performance of others available in the literature, in only 12,000 learning episodes.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2208.00525</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computer networks ; Fault tolerance ; Intelligent agents ; Machine learning ; Scientific papers</subject><ispartof>arXiv.org, 2022-07</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2697201404?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Vaz, Diogo</creatorcontrib><creatorcontrib>Matos, David R</creatorcontrib><creatorcontrib>Pardal, Miguel L</creatorcontrib><creatorcontrib>Correia, Miguel</creatorcontrib><title>Learning to generate Reliable Broadcast Algorithms</title><title>arXiv.org</title><description>Modern distributed systems are supported by fault-tolerant algorithms, like Reliable Broadcast and Consensus, that assure the correct operation of the system even when some of the nodes of the system fail. However, the development of distributed algorithms is a manual and complex process, resulting in scientific papers that usually present a single algorithm or variations of existing ones. To automate the process of developing such algorithms, this work presents an intelligent agent that uses Reinforcement Learning to generate correct and efficient fault-tolerant distributed algorithms. We show that our approach is able to generate correct fault-tolerant Reliable Broadcast algorithms with the same performance of others available in the literature, in only 12,000 learning episodes.</description><subject>Algorithms</subject><subject>Computer networks</subject><subject>Fault tolerance</subject><subject>Intelligent agents</subject><subject>Machine learning</subject><subject>Scientific papers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjstKw0AUQAdBsNR-gLsB14k3d97LWnxBQLDdl8nMNabEjM6k4udb0dXZnXMYu2qgllYpuPH5e_iqEcHWAArVGVugEE1lJeIFW5VyAADUBpUSC4Yt-TwNU8_nxHuaKPuZ-AuNg-9G4rc5-Rh8mfl67FMe5rf3csnOX_1YaPXPJdve3-02j1X7_PC0WbeVd0pVHQbsQGpjDIKIv2vBRlASotY-6hgDknUOPUgbonUBGtcFRcIasiiW7PrP-pHT55HKvD-kY55OwT1qd3I2EqT4ATEhRJI</recordid><startdate>20220731</startdate><enddate>20220731</enddate><creator>Vaz, Diogo</creator><creator>Matos, David R</creator><creator>Pardal, Miguel L</creator><creator>Correia, Miguel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220731</creationdate><title>Learning to generate Reliable Broadcast Algorithms</title><author>Vaz, Diogo ; Matos, David R ; Pardal, Miguel L ; Correia, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a955-b2c2b046777203d8550c8d0540d66ad6ddc2e8992a048cd89c019bc5e387e823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Computer networks</topic><topic>Fault tolerance</topic><topic>Intelligent agents</topic><topic>Machine learning</topic><topic>Scientific papers</topic><toplevel>online_resources</toplevel><creatorcontrib>Vaz, Diogo</creatorcontrib><creatorcontrib>Matos, David R</creatorcontrib><creatorcontrib>Pardal, Miguel L</creatorcontrib><creatorcontrib>Correia, Miguel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaz, Diogo</au><au>Matos, David R</au><au>Pardal, Miguel L</au><au>Correia, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning to generate Reliable Broadcast Algorithms</atitle><jtitle>arXiv.org</jtitle><date>2022-07-31</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Modern distributed systems are supported by fault-tolerant algorithms, like Reliable Broadcast and Consensus, that assure the correct operation of the system even when some of the nodes of the system fail. However, the development of distributed algorithms is a manual and complex process, resulting in scientific papers that usually present a single algorithm or variations of existing ones. To automate the process of developing such algorithms, this work presents an intelligent agent that uses Reinforcement Learning to generate correct and efficient fault-tolerant distributed algorithms. We show that our approach is able to generate correct fault-tolerant Reliable Broadcast algorithms with the same performance of others available in the literature, in only 12,000 learning episodes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2208.00525</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2697201404 |
source | Publicly Available Content (ProQuest) |
subjects | Algorithms Computer networks Fault tolerance Intelligent agents Machine learning Scientific papers |
title | Learning to generate Reliable Broadcast Algorithms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20to%20generate%20Reliable%20Broadcast%20Algorithms&rft.jtitle=arXiv.org&rft.au=Vaz,%20Diogo&rft.date=2022-07-31&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2208.00525&rft_dat=%3Cproquest%3E2697201404%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a955-b2c2b046777203d8550c8d0540d66ad6ddc2e8992a048cd89c019bc5e387e823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2697201404&rft_id=info:pmid/&rfr_iscdi=true |