Loading…

Detection of small internal fatigue cracks in Ti‐6Al‐4V via synchrotron radiation nanocomputed tomography

Two types of synchrotron radiation computed tomography (SR‐CT)—projection CT (micro‐CT) and phase‐contrast imaging CT (nano‐CT)—were used to observe internal fatigue cracks in (α + β) Ti‐6Al‐4V alloy. Micro‐CT detected cracks in the specimen at ~1 μm spatial resolution, and the nano‐CT provided magn...

Full description

Saved in:
Bibliographic Details
Published in:Fatigue & fracture of engineering materials & structures 2022-09, Vol.45 (9), p.2693-2702
Main Authors: Xue, Gaoge, Tomoda, Yuta, Nakamura, Takashi, Fujimura, Nao, Takahashi, Kosuke, Yoshinaka, Fumiyoshi, Takeuchi, Akihisa, Uesugi, Masayuki, Uesugi, Kentaro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4425-8693d560dddbe9016d751f2731f2d4cfd02c237fa2476fdfed0d366dfbbc3ab3
cites cdi_FETCH-LOGICAL-c4425-8693d560dddbe9016d751f2731f2d4cfd02c237fa2476fdfed0d366dfbbc3ab3
container_end_page 2702
container_issue 9
container_start_page 2693
container_title Fatigue & fracture of engineering materials & structures
container_volume 45
creator Xue, Gaoge
Tomoda, Yuta
Nakamura, Takashi
Fujimura, Nao
Takahashi, Kosuke
Yoshinaka, Fumiyoshi
Takeuchi, Akihisa
Uesugi, Masayuki
Uesugi, Kentaro
description Two types of synchrotron radiation computed tomography (SR‐CT)—projection CT (micro‐CT) and phase‐contrast imaging CT (nano‐CT)—were used to observe internal fatigue cracks in (α + β) Ti‐6Al‐4V alloy. Micro‐CT detected cracks in the specimen at ~1 μm spatial resolution, and the nano‐CT provided magnified images at ~200 nm spatial resolution. The crack initiation sites were clarified as the α‐phase for both the surface and internal cracks; however, their opening behaviors differed. A sharp crack tip was observed in the surface crack, and the crack tip opening displacement (CTOD) increased with an increase in the applied load. By contrast, a blunted crack tip, similar to that of a crack in a vacuum, was observed for the internal crack, and its CTOD remained almost constant regardless of the applied load. These phenomena are likely to explain the different behaviors of surface and internal cracks, particularly the slower growth rate of internal cracks, which leads to a longer fatigue life in the very high cycle fatigue regime. Highlights Small internal cracks with local microstructure were observed using nano‐CT in Ti‐6Al‐4V. Both surface and internal small cracks in Ti‐6Al‐4V initiated from the alpha phase. Surface cracks tips are sharper and more sensitive to external load than internal crack. Internal cracks have similar crack opening behaviors to those of cracks in a vacuum.
doi_str_mv 10.1111/ffe.13765
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2697499733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2697499733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4425-8693d560dddbe9016d751f2731f2d4cfd02c237fa2476fdfed0d366dfbbc3ab3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFI68SO3SyrQgGpEpsKsbMc_7QuSRzsBJQdR-CMnAS3Zcss3kijb55mHgDXKZqksabG6EmKGc1PwCglFCUZLfJTMJqxnCYsn72eg4sQdgillGA8AvWd7rTsrGugMzDUoqqgbTrtG1FBIzq76TWUXsi3EOdwbX--vum8ikpe4IcVMAyN3HrX-ejghbLi4NWIxklXt32nFexc7TZetNvhEpwZUQV99dfHYL28Xy8ek9Xzw9NivkokIVmezGiBVU6RUqrURTxVsTw1GcNRFJFGoUxmmBmREUaNMlohhSlVpiwlFiUeg5ujbevde69Dx3eu338UeIyDkaJgGEfq9khJ70Lw2vDW21r4gaeI78PkMUx-CDOy0yP7aSs9_A_y5fL-uPELDBp6Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697499733</pqid></control><display><type>article</type><title>Detection of small internal fatigue cracks in Ti‐6Al‐4V via synchrotron radiation nanocomputed tomography</title><source>Wiley</source><creator>Xue, Gaoge ; Tomoda, Yuta ; Nakamura, Takashi ; Fujimura, Nao ; Takahashi, Kosuke ; Yoshinaka, Fumiyoshi ; Takeuchi, Akihisa ; Uesugi, Masayuki ; Uesugi, Kentaro</creator><creatorcontrib>Xue, Gaoge ; Tomoda, Yuta ; Nakamura, Takashi ; Fujimura, Nao ; Takahashi, Kosuke ; Yoshinaka, Fumiyoshi ; Takeuchi, Akihisa ; Uesugi, Masayuki ; Uesugi, Kentaro</creatorcontrib><description>Two types of synchrotron radiation computed tomography (SR‐CT)—projection CT (micro‐CT) and phase‐contrast imaging CT (nano‐CT)—were used to observe internal fatigue cracks in (α + β) Ti‐6Al‐4V alloy. Micro‐CT detected cracks in the specimen at ~1 μm spatial resolution, and the nano‐CT provided magnified images at ~200 nm spatial resolution. The crack initiation sites were clarified as the α‐phase for both the surface and internal cracks; however, their opening behaviors differed. A sharp crack tip was observed in the surface crack, and the crack tip opening displacement (CTOD) increased with an increase in the applied load. By contrast, a blunted crack tip, similar to that of a crack in a vacuum, was observed for the internal crack, and its CTOD remained almost constant regardless of the applied load. These phenomena are likely to explain the different behaviors of surface and internal cracks, particularly the slower growth rate of internal cracks, which leads to a longer fatigue life in the very high cycle fatigue regime. Highlights Small internal cracks with local microstructure were observed using nano‐CT in Ti‐6Al‐4V. Both surface and internal small cracks in Ti‐6Al‐4V initiated from the alpha phase. Surface cracks tips are sharper and more sensitive to external load than internal crack. Internal cracks have similar crack opening behaviors to those of cracks in a vacuum.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.13765</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Computed tomography ; Crack initiation ; Crack opening displacement ; Crack propagation ; Crack tips ; Fatigue cracks ; Fatigue failure ; Fatigue life ; Flaw detection ; High cycle fatigue ; Radiation ; Spatial resolution ; Surface cracks ; Synchrotron radiation ; Synchrotrons ; Titanium base alloys ; Tomography</subject><ispartof>Fatigue &amp; fracture of engineering materials &amp; structures, 2022-09, Vol.45 (9), p.2693-2702</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 Wiley Publishing Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4425-8693d560dddbe9016d751f2731f2d4cfd02c237fa2476fdfed0d366dfbbc3ab3</citedby><cites>FETCH-LOGICAL-c4425-8693d560dddbe9016d751f2731f2d4cfd02c237fa2476fdfed0d366dfbbc3ab3</cites><orcidid>0000-0003-2579-513X ; 0000-0002-7399-3774 ; 0000-0001-7693-9928 ; 0000-0003-2906-2013 ; 0000-0001-6261-9034 ; 0000-0002-3310-6894 ; 0000-0001-9673-7768 ; 0000-0003-0534-7815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xue, Gaoge</creatorcontrib><creatorcontrib>Tomoda, Yuta</creatorcontrib><creatorcontrib>Nakamura, Takashi</creatorcontrib><creatorcontrib>Fujimura, Nao</creatorcontrib><creatorcontrib>Takahashi, Kosuke</creatorcontrib><creatorcontrib>Yoshinaka, Fumiyoshi</creatorcontrib><creatorcontrib>Takeuchi, Akihisa</creatorcontrib><creatorcontrib>Uesugi, Masayuki</creatorcontrib><creatorcontrib>Uesugi, Kentaro</creatorcontrib><title>Detection of small internal fatigue cracks in Ti‐6Al‐4V via synchrotron radiation nanocomputed tomography</title><title>Fatigue &amp; fracture of engineering materials &amp; structures</title><description>Two types of synchrotron radiation computed tomography (SR‐CT)—projection CT (micro‐CT) and phase‐contrast imaging CT (nano‐CT)—were used to observe internal fatigue cracks in (α + β) Ti‐6Al‐4V alloy. Micro‐CT detected cracks in the specimen at ~1 μm spatial resolution, and the nano‐CT provided magnified images at ~200 nm spatial resolution. The crack initiation sites were clarified as the α‐phase for both the surface and internal cracks; however, their opening behaviors differed. A sharp crack tip was observed in the surface crack, and the crack tip opening displacement (CTOD) increased with an increase in the applied load. By contrast, a blunted crack tip, similar to that of a crack in a vacuum, was observed for the internal crack, and its CTOD remained almost constant regardless of the applied load. These phenomena are likely to explain the different behaviors of surface and internal cracks, particularly the slower growth rate of internal cracks, which leads to a longer fatigue life in the very high cycle fatigue regime. Highlights Small internal cracks with local microstructure were observed using nano‐CT in Ti‐6Al‐4V. Both surface and internal small cracks in Ti‐6Al‐4V initiated from the alpha phase. Surface cracks tips are sharper and more sensitive to external load than internal crack. Internal cracks have similar crack opening behaviors to those of cracks in a vacuum.</description><subject>Computed tomography</subject><subject>Crack initiation</subject><subject>Crack opening displacement</subject><subject>Crack propagation</subject><subject>Crack tips</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Flaw detection</subject><subject>High cycle fatigue</subject><subject>Radiation</subject><subject>Spatial resolution</subject><subject>Surface cracks</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><subject>Titanium base alloys</subject><subject>Tomography</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFI68SO3SyrQgGpEpsKsbMc_7QuSRzsBJQdR-CMnAS3Zcss3kijb55mHgDXKZqksabG6EmKGc1PwCglFCUZLfJTMJqxnCYsn72eg4sQdgillGA8AvWd7rTsrGugMzDUoqqgbTrtG1FBIzq76TWUXsi3EOdwbX--vum8ikpe4IcVMAyN3HrX-ejghbLi4NWIxklXt32nFexc7TZetNvhEpwZUQV99dfHYL28Xy8ek9Xzw9NivkokIVmezGiBVU6RUqrURTxVsTw1GcNRFJFGoUxmmBmREUaNMlohhSlVpiwlFiUeg5ujbevde69Dx3eu338UeIyDkaJgGEfq9khJ70Lw2vDW21r4gaeI78PkMUx-CDOy0yP7aSs9_A_y5fL-uPELDBp6Bg</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Xue, Gaoge</creator><creator>Tomoda, Yuta</creator><creator>Nakamura, Takashi</creator><creator>Fujimura, Nao</creator><creator>Takahashi, Kosuke</creator><creator>Yoshinaka, Fumiyoshi</creator><creator>Takeuchi, Akihisa</creator><creator>Uesugi, Masayuki</creator><creator>Uesugi, Kentaro</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-2579-513X</orcidid><orcidid>https://orcid.org/0000-0002-7399-3774</orcidid><orcidid>https://orcid.org/0000-0001-7693-9928</orcidid><orcidid>https://orcid.org/0000-0003-2906-2013</orcidid><orcidid>https://orcid.org/0000-0001-6261-9034</orcidid><orcidid>https://orcid.org/0000-0002-3310-6894</orcidid><orcidid>https://orcid.org/0000-0001-9673-7768</orcidid><orcidid>https://orcid.org/0000-0003-0534-7815</orcidid></search><sort><creationdate>202209</creationdate><title>Detection of small internal fatigue cracks in Ti‐6Al‐4V via synchrotron radiation nanocomputed tomography</title><author>Xue, Gaoge ; Tomoda, Yuta ; Nakamura, Takashi ; Fujimura, Nao ; Takahashi, Kosuke ; Yoshinaka, Fumiyoshi ; Takeuchi, Akihisa ; Uesugi, Masayuki ; Uesugi, Kentaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4425-8693d560dddbe9016d751f2731f2d4cfd02c237fa2476fdfed0d366dfbbc3ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computed tomography</topic><topic>Crack initiation</topic><topic>Crack opening displacement</topic><topic>Crack propagation</topic><topic>Crack tips</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Flaw detection</topic><topic>High cycle fatigue</topic><topic>Radiation</topic><topic>Spatial resolution</topic><topic>Surface cracks</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><topic>Titanium base alloys</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Gaoge</creatorcontrib><creatorcontrib>Tomoda, Yuta</creatorcontrib><creatorcontrib>Nakamura, Takashi</creatorcontrib><creatorcontrib>Fujimura, Nao</creatorcontrib><creatorcontrib>Takahashi, Kosuke</creatorcontrib><creatorcontrib>Yoshinaka, Fumiyoshi</creatorcontrib><creatorcontrib>Takeuchi, Akihisa</creatorcontrib><creatorcontrib>Uesugi, Masayuki</creatorcontrib><creatorcontrib>Uesugi, Kentaro</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Gaoge</au><au>Tomoda, Yuta</au><au>Nakamura, Takashi</au><au>Fujimura, Nao</au><au>Takahashi, Kosuke</au><au>Yoshinaka, Fumiyoshi</au><au>Takeuchi, Akihisa</au><au>Uesugi, Masayuki</au><au>Uesugi, Kentaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of small internal fatigue cracks in Ti‐6Al‐4V via synchrotron radiation nanocomputed tomography</atitle><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle><date>2022-09</date><risdate>2022</risdate><volume>45</volume><issue>9</issue><spage>2693</spage><epage>2702</epage><pages>2693-2702</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>Two types of synchrotron radiation computed tomography (SR‐CT)—projection CT (micro‐CT) and phase‐contrast imaging CT (nano‐CT)—were used to observe internal fatigue cracks in (α + β) Ti‐6Al‐4V alloy. Micro‐CT detected cracks in the specimen at ~1 μm spatial resolution, and the nano‐CT provided magnified images at ~200 nm spatial resolution. The crack initiation sites were clarified as the α‐phase for both the surface and internal cracks; however, their opening behaviors differed. A sharp crack tip was observed in the surface crack, and the crack tip opening displacement (CTOD) increased with an increase in the applied load. By contrast, a blunted crack tip, similar to that of a crack in a vacuum, was observed for the internal crack, and its CTOD remained almost constant regardless of the applied load. These phenomena are likely to explain the different behaviors of surface and internal cracks, particularly the slower growth rate of internal cracks, which leads to a longer fatigue life in the very high cycle fatigue regime. Highlights Small internal cracks with local microstructure were observed using nano‐CT in Ti‐6Al‐4V. Both surface and internal small cracks in Ti‐6Al‐4V initiated from the alpha phase. Surface cracks tips are sharper and more sensitive to external load than internal crack. Internal cracks have similar crack opening behaviors to those of cracks in a vacuum.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.13765</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2579-513X</orcidid><orcidid>https://orcid.org/0000-0002-7399-3774</orcidid><orcidid>https://orcid.org/0000-0001-7693-9928</orcidid><orcidid>https://orcid.org/0000-0003-2906-2013</orcidid><orcidid>https://orcid.org/0000-0001-6261-9034</orcidid><orcidid>https://orcid.org/0000-0002-3310-6894</orcidid><orcidid>https://orcid.org/0000-0001-9673-7768</orcidid><orcidid>https://orcid.org/0000-0003-0534-7815</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 8756-758X
ispartof Fatigue & fracture of engineering materials & structures, 2022-09, Vol.45 (9), p.2693-2702
issn 8756-758X
1460-2695
language eng
recordid cdi_proquest_journals_2697499733
source Wiley
subjects Computed tomography
Crack initiation
Crack opening displacement
Crack propagation
Crack tips
Fatigue cracks
Fatigue failure
Fatigue life
Flaw detection
High cycle fatigue
Radiation
Spatial resolution
Surface cracks
Synchrotron radiation
Synchrotrons
Titanium base alloys
Tomography
title Detection of small internal fatigue cracks in Ti‐6Al‐4V via synchrotron radiation nanocomputed tomography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A24%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20small%20internal%20fatigue%20cracks%20in%20Ti%E2%80%906Al%E2%80%904V%20via%20synchrotron%20radiation%20nanocomputed%20tomography&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Xue,%20Gaoge&rft.date=2022-09&rft.volume=45&rft.issue=9&rft.spage=2693&rft.epage=2702&rft.pages=2693-2702&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.13765&rft_dat=%3Cproquest_cross%3E2697499733%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4425-8693d560dddbe9016d751f2731f2d4cfd02c237fa2476fdfed0d366dfbbc3ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2697499733&rft_id=info:pmid/&rfr_iscdi=true