Loading…

Deep Reinforcement Learning for Multi-Agent Interaction

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems c...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-08
Main Authors: Ahmed, Ibrahim H, Brewitt, Cillian, Carlucho, Ignacio, Christianos, Filippos, Dunion, Mhairi, Fosong, Elliot, Garcin, Samuel, Guo, Shangmin, Balint Gyevnar, McInroe, Trevor, Papoudakis, Georgios, Rahman, Arrasy, Schäfer, Lukas, Tamborski, Massimiliano, Vecchio, Giuseppe, Wang, Cheng, Albrecht, Stefano V
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.
ISSN:2331-8422