Loading…
Homotopy commutativity in Hermitian symmetric spaces
Ganea proved that the loop space of $\mathbb{C} P^n$ is homotopy commutative if and only if $n=3$ . We generalize this result to that the loop spaces of all irreducible Hermitian symmetric spaces but $\mathbb{C} P^3$ are not homotopy commutative. The computation also applies to determining the homot...
Saved in:
Published in: | Glasgow mathematical journal 2022-09, Vol.64 (3), p.746-752 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c356t-542511ab86d65a137173849e53d1531e816e0df017ccec82909d2c416c14e0c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-542511ab86d65a137173849e53d1531e816e0df017ccec82909d2c416c14e0c3 |
container_end_page | 752 |
container_issue | 3 |
container_start_page | 746 |
container_title | Glasgow mathematical journal |
container_volume | 64 |
creator | Kishimoto, Daisuke Takeda, Masahiro Tong, Yichen |
description | Ganea proved that the loop space of
$\mathbb{C} P^n$
is homotopy commutative if and only if
$n=3$
. We generalize this result to that the loop spaces of all irreducible Hermitian symmetric spaces but
$\mathbb{C} P^3$
are not homotopy commutative. The computation also applies to determining the homotopy nilpotency class of the loop spaces of generalized flag manifolds
$G/T$
for a maximal torus T of a compact, connected Lie group G. |
doi_str_mv | 10.1017/S0017089522000118 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2698357718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0017089522000118</cupid><sourcerecordid>2698357718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-542511ab86d65a137173849e53d1531e816e0df017ccec82909d2c416c14e0c3</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaJgXf0B3gqeq5mmSZOjLGoXFjy4B28lm6aSxTQ1SYX-e1N2wYN4mZnH-5hhELoFfA8Y6oc3nCrmgpYlTiPwM5RBxURBsXg_R9lCFwt_ia5COCRIEspQ1TjrohvnXDlrpyij-TZxzs2QN9pbE40c8jBbq6M3Kg-jVDpco4tefgZ9c-ortHt-2q2bYvv6slk_bgtFKIsFrUoKIPecdYxKIDXUhFdCU9IBJaA5MI27Pl2mlFa8FFh0paqAKag0VmSF7o6xo3dfkw6xPbjJD2ljWzLBCa1r4EkFR5XyLgSv-3b0xko_t4Db5Tftn98kDzl5pN17033o3-j_XT_azGR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2698357718</pqid></control><display><type>article</type><title>Homotopy commutativity in Hermitian symmetric spaces</title><source>Cambridge University Press</source><creator>Kishimoto, Daisuke ; Takeda, Masahiro ; Tong, Yichen</creator><creatorcontrib>Kishimoto, Daisuke ; Takeda, Masahiro ; Tong, Yichen</creatorcontrib><description>Ganea proved that the loop space of
$\mathbb{C} P^n$
is homotopy commutative if and only if
$n=3$
. We generalize this result to that the loop spaces of all irreducible Hermitian symmetric spaces but
$\mathbb{C} P^3$
are not homotopy commutative. The computation also applies to determining the homotopy nilpotency class of the loop spaces of generalized flag manifolds
$G/T$
for a maximal torus T of a compact, connected Lie group G.</description><identifier>ISSN: 0017-0895</identifier><identifier>EISSN: 1469-509X</identifier><identifier>DOI: 10.1017/S0017089522000118</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Commutativity ; Lie groups ; Toruses</subject><ispartof>Glasgow mathematical journal, 2022-09, Vol.64 (3), p.746-752</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-542511ab86d65a137173849e53d1531e816e0df017ccec82909d2c416c14e0c3</citedby><cites>FETCH-LOGICAL-c356t-542511ab86d65a137173849e53d1531e816e0df017ccec82909d2c416c14e0c3</cites><orcidid>0000-0002-7837-8818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0017089522000118/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Kishimoto, Daisuke</creatorcontrib><creatorcontrib>Takeda, Masahiro</creatorcontrib><creatorcontrib>Tong, Yichen</creatorcontrib><title>Homotopy commutativity in Hermitian symmetric spaces</title><title>Glasgow mathematical journal</title><addtitle>Glasgow Math. J</addtitle><description>Ganea proved that the loop space of
$\mathbb{C} P^n$
is homotopy commutative if and only if
$n=3$
. We generalize this result to that the loop spaces of all irreducible Hermitian symmetric spaces but
$\mathbb{C} P^3$
are not homotopy commutative. The computation also applies to determining the homotopy nilpotency class of the loop spaces of generalized flag manifolds
$G/T$
for a maximal torus T of a compact, connected Lie group G.</description><subject>Commutativity</subject><subject>Lie groups</subject><subject>Toruses</subject><issn>0017-0895</issn><issn>1469-509X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAQDaJgXf0B3gqeq5mmSZOjLGoXFjy4B28lm6aSxTQ1SYX-e1N2wYN4mZnH-5hhELoFfA8Y6oc3nCrmgpYlTiPwM5RBxURBsXg_R9lCFwt_ia5COCRIEspQ1TjrohvnXDlrpyij-TZxzs2QN9pbE40c8jBbq6M3Kg-jVDpco4tefgZ9c-ortHt-2q2bYvv6slk_bgtFKIsFrUoKIPecdYxKIDXUhFdCU9IBJaA5MI27Pl2mlFa8FFh0paqAKag0VmSF7o6xo3dfkw6xPbjJD2ljWzLBCa1r4EkFR5XyLgSv-3b0xko_t4Db5Tftn98kDzl5pN17033o3-j_XT_azGR8</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Kishimoto, Daisuke</creator><creator>Takeda, Masahiro</creator><creator>Tong, Yichen</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7837-8818</orcidid></search><sort><creationdate>20220901</creationdate><title>Homotopy commutativity in Hermitian symmetric spaces</title><author>Kishimoto, Daisuke ; Takeda, Masahiro ; Tong, Yichen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-542511ab86d65a137173849e53d1531e816e0df017ccec82909d2c416c14e0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Commutativity</topic><topic>Lie groups</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kishimoto, Daisuke</creatorcontrib><creatorcontrib>Takeda, Masahiro</creatorcontrib><creatorcontrib>Tong, Yichen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Glasgow mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kishimoto, Daisuke</au><au>Takeda, Masahiro</au><au>Tong, Yichen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homotopy commutativity in Hermitian symmetric spaces</atitle><jtitle>Glasgow mathematical journal</jtitle><addtitle>Glasgow Math. J</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>64</volume><issue>3</issue><spage>746</spage><epage>752</epage><pages>746-752</pages><issn>0017-0895</issn><eissn>1469-509X</eissn><abstract>Ganea proved that the loop space of
$\mathbb{C} P^n$
is homotopy commutative if and only if
$n=3$
. We generalize this result to that the loop spaces of all irreducible Hermitian symmetric spaces but
$\mathbb{C} P^3$
are not homotopy commutative. The computation also applies to determining the homotopy nilpotency class of the loop spaces of generalized flag manifolds
$G/T$
for a maximal torus T of a compact, connected Lie group G.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0017089522000118</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7837-8818</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-0895 |
ispartof | Glasgow mathematical journal, 2022-09, Vol.64 (3), p.746-752 |
issn | 0017-0895 1469-509X |
language | eng |
recordid | cdi_proquest_journals_2698357718 |
source | Cambridge University Press |
subjects | Commutativity Lie groups Toruses |
title | Homotopy commutativity in Hermitian symmetric spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homotopy%20commutativity%20in%20Hermitian%20symmetric%20spaces&rft.jtitle=Glasgow%20mathematical%20journal&rft.au=Kishimoto,%20Daisuke&rft.date=2022-09-01&rft.volume=64&rft.issue=3&rft.spage=746&rft.epage=752&rft.pages=746-752&rft.issn=0017-0895&rft.eissn=1469-509X&rft_id=info:doi/10.1017/S0017089522000118&rft_dat=%3Cproquest_cross%3E2698357718%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-542511ab86d65a137173849e53d1531e816e0df017ccec82909d2c416c14e0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2698357718&rft_id=info:pmid/&rft_cupid=10_1017_S0017089522000118&rfr_iscdi=true |