Loading…

Teaching Scattering Matrix in Electrical Engineering-Misconceptions and Clarifications

This paper presents a new approach to introducing scattering parameters for dispelling doubts and misconceptions. Normalization of voltage and current is first introduced for the subsequent descriptions of normalized matrices. The analogy with lossless transmission lines is used to define voltage wa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.79249-79263
Main Authors: Haldar, Manas Kumar, Hlaing, Ngu War, Su, Hieng T., Farzamnia, Ali, FAN, Liau Chung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c288t-261b1a6434ad928d4888f40a2374d253890bbffef48324af56fd4b78a9cf65a13
container_end_page 79263
container_issue
container_start_page 79249
container_title IEEE access
container_volume 10
creator Haldar, Manas Kumar
Hlaing, Ngu War
Su, Hieng T.
Farzamnia, Ali
FAN, Liau Chung
description This paper presents a new approach to introducing scattering parameters for dispelling doubts and misconceptions. Normalization of voltage and current is first introduced for the subsequent descriptions of normalized matrices. The analogy with lossless transmission lines is used to define voltage waves in terms of circuit voltages and currents. Scattering parameters are interpreted as reflection and transmission coefficients for real normalizing impedance. Power considerations are made to interpret scattering parameters as power ratios. The condition for the lossless circuit is derived, and it is shown that the definitions of the voltage waves satisfy maximum power transfer conditions for real input impedance. Reciprocity conditions are derived to show that the normalized, not the unnormalized scattering matrix, is symmetric. The application of losslessness and reciprocity in filter design is clarified. Next, it is shown why definitions of forward and reverse voltage have to be changed for complex normalizing impedances. The relationships of matrices for complex normalizing impedance are shown to reduce to those for real normalizing impedance. The procedure for changing normalizing impedance is given, and its application for amplifier design is briefly described. The difference between circuit symmetry and physical symmetry is pointed out. Finally, it is shown how odd and even mode analysis arises from a mathematical consideration of symmetrical two-port networks. A straightforward discussion of Wilkinson power divider is given to illustrate the application of these modes.
doi_str_mv 10.1109/ACCESS.2022.3194262
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2698813787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9841551</ieee_id><doaj_id>oai_doaj_org_article_a414a2fa15cd4502b71872eb4cfd1e2a</doaj_id><sourcerecordid>2698813787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-261b1a6434ad928d4888f40a2374d253890bbffef48324af56fd4b78a9cf65a13</originalsourceid><addsrcrecordid>eNpNUU1rwkAUDKWFivUXeAn0HJt9-5HdowTbCkoP2l6Xl82uXUkTu4nQ_vtGI9J3ecMwM-_BRNGUpDNCUvU0z_PFZjODFGBGiWIg4CYaAREqoZyK23_4Ppq07T7tR_YUz0bRx9ai-fT1Lt4Y7DobTnCNXfA_sa_jRWVNjw1W8aLe-dqeBcnat6apjT10vqnbGOsyzisM3vXKM_UQ3TmsWju57HH0_rzY5q_J6u1lmc9XiQEpuwQEKQgKRhmWCmTJpJSOpQg0YyVwKlVaFM5ZxyQFho4LV7Iik6iMExwJHUfLIbdscK8PwX9h-NUNen0mmrDTGDpvKquREYbgkHBTMp5CkRGZgS2YcSWxgH3W45B1CM330bad3jfHUPfvaxBKSkIzmfUqOqhMaNo2WHe9SlJ96kMPfehTH_rSR--aDi5vrb06lGSEc0L_AK_-htM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2698813787</pqid></control><display><type>article</type><title>Teaching Scattering Matrix in Electrical Engineering-Misconceptions and Clarifications</title><source>IEEE Xplore Open Access Journals</source><creator>Haldar, Manas Kumar ; Hlaing, Ngu War ; Su, Hieng T. ; Farzamnia, Ali ; FAN, Liau Chung</creator><creatorcontrib>Haldar, Manas Kumar ; Hlaing, Ngu War ; Su, Hieng T. ; Farzamnia, Ali ; FAN, Liau Chung</creatorcontrib><description>This paper presents a new approach to introducing scattering parameters for dispelling doubts and misconceptions. Normalization of voltage and current is first introduced for the subsequent descriptions of normalized matrices. The analogy with lossless transmission lines is used to define voltage waves in terms of circuit voltages and currents. Scattering parameters are interpreted as reflection and transmission coefficients for real normalizing impedance. Power considerations are made to interpret scattering parameters as power ratios. The condition for the lossless circuit is derived, and it is shown that the definitions of the voltage waves satisfy maximum power transfer conditions for real input impedance. Reciprocity conditions are derived to show that the normalized, not the unnormalized scattering matrix, is symmetric. The application of losslessness and reciprocity in filter design is clarified. Next, it is shown why definitions of forward and reverse voltage have to be changed for complex normalizing impedances. The relationships of matrices for complex normalizing impedance are shown to reduce to those for real normalizing impedance. The procedure for changing normalizing impedance is given, and its application for amplifier design is briefly described. The difference between circuit symmetry and physical symmetry is pointed out. Finally, it is shown how odd and even mode analysis arises from a mathematical consideration of symmetrical two-port networks. A straightforward discussion of Wilkinson power divider is given to illustrate the application of these modes.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3194262</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Amplifier ; Amplifier design ; Circuit design ; Circuits ; Electric potential ; filter ; Filter design (mathematics) ; Impedance ; Impedance measurement ; Input impedance ; lossless network ; Mathematical analysis ; Maximum power transfer ; Normalizing ; power divider ; Power dividers ; Reciprocity ; reference impedance ; S matrix theory ; S parameters ; Scattering ; scattering matrix ; Scattering parameters ; Symmetric matrices ; Symmetry ; Transmission line matrix methods ; Transmission lines ; Voltage</subject><ispartof>IEEE access, 2022, Vol.10, p.79249-79263</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-261b1a6434ad928d4888f40a2374d253890bbffef48324af56fd4b78a9cf65a13</cites><orcidid>0000-0001-8618-7256 ; 0000-0001-5797-8999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9841551$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Haldar, Manas Kumar</creatorcontrib><creatorcontrib>Hlaing, Ngu War</creatorcontrib><creatorcontrib>Su, Hieng T.</creatorcontrib><creatorcontrib>Farzamnia, Ali</creatorcontrib><creatorcontrib>FAN, Liau Chung</creatorcontrib><title>Teaching Scattering Matrix in Electrical Engineering-Misconceptions and Clarifications</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents a new approach to introducing scattering parameters for dispelling doubts and misconceptions. Normalization of voltage and current is first introduced for the subsequent descriptions of normalized matrices. The analogy with lossless transmission lines is used to define voltage waves in terms of circuit voltages and currents. Scattering parameters are interpreted as reflection and transmission coefficients for real normalizing impedance. Power considerations are made to interpret scattering parameters as power ratios. The condition for the lossless circuit is derived, and it is shown that the definitions of the voltage waves satisfy maximum power transfer conditions for real input impedance. Reciprocity conditions are derived to show that the normalized, not the unnormalized scattering matrix, is symmetric. The application of losslessness and reciprocity in filter design is clarified. Next, it is shown why definitions of forward and reverse voltage have to be changed for complex normalizing impedances. The relationships of matrices for complex normalizing impedance are shown to reduce to those for real normalizing impedance. The procedure for changing normalizing impedance is given, and its application for amplifier design is briefly described. The difference between circuit symmetry and physical symmetry is pointed out. Finally, it is shown how odd and even mode analysis arises from a mathematical consideration of symmetrical two-port networks. A straightforward discussion of Wilkinson power divider is given to illustrate the application of these modes.</description><subject>Amplifier</subject><subject>Amplifier design</subject><subject>Circuit design</subject><subject>Circuits</subject><subject>Electric potential</subject><subject>filter</subject><subject>Filter design (mathematics)</subject><subject>Impedance</subject><subject>Impedance measurement</subject><subject>Input impedance</subject><subject>lossless network</subject><subject>Mathematical analysis</subject><subject>Maximum power transfer</subject><subject>Normalizing</subject><subject>power divider</subject><subject>Power dividers</subject><subject>Reciprocity</subject><subject>reference impedance</subject><subject>S matrix theory</subject><subject>S parameters</subject><subject>Scattering</subject><subject>scattering matrix</subject><subject>Scattering parameters</subject><subject>Symmetric matrices</subject><subject>Symmetry</subject><subject>Transmission line matrix methods</subject><subject>Transmission lines</subject><subject>Voltage</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rwkAUDKWFivUXeAn0HJt9-5HdowTbCkoP2l6Xl82uXUkTu4nQ_vtGI9J3ecMwM-_BRNGUpDNCUvU0z_PFZjODFGBGiWIg4CYaAREqoZyK23_4Ppq07T7tR_YUz0bRx9ai-fT1Lt4Y7DobTnCNXfA_sa_jRWVNjw1W8aLe-dqeBcnat6apjT10vqnbGOsyzisM3vXKM_UQ3TmsWju57HH0_rzY5q_J6u1lmc9XiQEpuwQEKQgKRhmWCmTJpJSOpQg0YyVwKlVaFM5ZxyQFho4LV7Iik6iMExwJHUfLIbdscK8PwX9h-NUNen0mmrDTGDpvKquREYbgkHBTMp5CkRGZgS2YcSWxgH3W45B1CM330bad3jfHUPfvaxBKSkIzmfUqOqhMaNo2WHe9SlJ96kMPfehTH_rSR--aDi5vrb06lGSEc0L_AK_-htM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Haldar, Manas Kumar</creator><creator>Hlaing, Ngu War</creator><creator>Su, Hieng T.</creator><creator>Farzamnia, Ali</creator><creator>FAN, Liau Chung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8618-7256</orcidid><orcidid>https://orcid.org/0000-0001-5797-8999</orcidid></search><sort><creationdate>2022</creationdate><title>Teaching Scattering Matrix in Electrical Engineering-Misconceptions and Clarifications</title><author>Haldar, Manas Kumar ; Hlaing, Ngu War ; Su, Hieng T. ; Farzamnia, Ali ; FAN, Liau Chung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-261b1a6434ad928d4888f40a2374d253890bbffef48324af56fd4b78a9cf65a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amplifier</topic><topic>Amplifier design</topic><topic>Circuit design</topic><topic>Circuits</topic><topic>Electric potential</topic><topic>filter</topic><topic>Filter design (mathematics)</topic><topic>Impedance</topic><topic>Impedance measurement</topic><topic>Input impedance</topic><topic>lossless network</topic><topic>Mathematical analysis</topic><topic>Maximum power transfer</topic><topic>Normalizing</topic><topic>power divider</topic><topic>Power dividers</topic><topic>Reciprocity</topic><topic>reference impedance</topic><topic>S matrix theory</topic><topic>S parameters</topic><topic>Scattering</topic><topic>scattering matrix</topic><topic>Scattering parameters</topic><topic>Symmetric matrices</topic><topic>Symmetry</topic><topic>Transmission line matrix methods</topic><topic>Transmission lines</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haldar, Manas Kumar</creatorcontrib><creatorcontrib>Hlaing, Ngu War</creatorcontrib><creatorcontrib>Su, Hieng T.</creatorcontrib><creatorcontrib>Farzamnia, Ali</creatorcontrib><creatorcontrib>FAN, Liau Chung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haldar, Manas Kumar</au><au>Hlaing, Ngu War</au><au>Su, Hieng T.</au><au>Farzamnia, Ali</au><au>FAN, Liau Chung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Teaching Scattering Matrix in Electrical Engineering-Misconceptions and Clarifications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>79249</spage><epage>79263</epage><pages>79249-79263</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents a new approach to introducing scattering parameters for dispelling doubts and misconceptions. Normalization of voltage and current is first introduced for the subsequent descriptions of normalized matrices. The analogy with lossless transmission lines is used to define voltage waves in terms of circuit voltages and currents. Scattering parameters are interpreted as reflection and transmission coefficients for real normalizing impedance. Power considerations are made to interpret scattering parameters as power ratios. The condition for the lossless circuit is derived, and it is shown that the definitions of the voltage waves satisfy maximum power transfer conditions for real input impedance. Reciprocity conditions are derived to show that the normalized, not the unnormalized scattering matrix, is symmetric. The application of losslessness and reciprocity in filter design is clarified. Next, it is shown why definitions of forward and reverse voltage have to be changed for complex normalizing impedances. The relationships of matrices for complex normalizing impedance are shown to reduce to those for real normalizing impedance. The procedure for changing normalizing impedance is given, and its application for amplifier design is briefly described. The difference between circuit symmetry and physical symmetry is pointed out. Finally, it is shown how odd and even mode analysis arises from a mathematical consideration of symmetrical two-port networks. A straightforward discussion of Wilkinson power divider is given to illustrate the application of these modes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3194262</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8618-7256</orcidid><orcidid>https://orcid.org/0000-0001-5797-8999</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.79249-79263
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2698813787
source IEEE Xplore Open Access Journals
subjects Amplifier
Amplifier design
Circuit design
Circuits
Electric potential
filter
Filter design (mathematics)
Impedance
Impedance measurement
Input impedance
lossless network
Mathematical analysis
Maximum power transfer
Normalizing
power divider
Power dividers
Reciprocity
reference impedance
S matrix theory
S parameters
Scattering
scattering matrix
Scattering parameters
Symmetric matrices
Symmetry
Transmission line matrix methods
Transmission lines
Voltage
title Teaching Scattering Matrix in Electrical Engineering-Misconceptions and Clarifications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Teaching%20Scattering%20Matrix%20in%20Electrical%20Engineering-Misconceptions%20and%20Clarifications&rft.jtitle=IEEE%20access&rft.au=Haldar,%20Manas%20Kumar&rft.date=2022&rft.volume=10&rft.spage=79249&rft.epage=79263&rft.pages=79249-79263&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3194262&rft_dat=%3Cproquest_doaj_%3E2698813787%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-261b1a6434ad928d4888f40a2374d253890bbffef48324af56fd4b78a9cf65a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2698813787&rft_id=info:pmid/&rft_ieee_id=9841551&rfr_iscdi=true