Loading…
Teaching Scattering Matrix in Electrical Engineering-Misconceptions and Clarifications
This paper presents a new approach to introducing scattering parameters for dispelling doubts and misconceptions. Normalization of voltage and current is first introduced for the subsequent descriptions of normalized matrices. The analogy with lossless transmission lines is used to define voltage wa...
Saved in:
Published in: | IEEE access 2022, Vol.10, p.79249-79263 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-261b1a6434ad928d4888f40a2374d253890bbffef48324af56fd4b78a9cf65a13 |
container_end_page | 79263 |
container_issue | |
container_start_page | 79249 |
container_title | IEEE access |
container_volume | 10 |
creator | Haldar, Manas Kumar Hlaing, Ngu War Su, Hieng T. Farzamnia, Ali FAN, Liau Chung |
description | This paper presents a new approach to introducing scattering parameters for dispelling doubts and misconceptions. Normalization of voltage and current is first introduced for the subsequent descriptions of normalized matrices. The analogy with lossless transmission lines is used to define voltage waves in terms of circuit voltages and currents. Scattering parameters are interpreted as reflection and transmission coefficients for real normalizing impedance. Power considerations are made to interpret scattering parameters as power ratios. The condition for the lossless circuit is derived, and it is shown that the definitions of the voltage waves satisfy maximum power transfer conditions for real input impedance. Reciprocity conditions are derived to show that the normalized, not the unnormalized scattering matrix, is symmetric. The application of losslessness and reciprocity in filter design is clarified. Next, it is shown why definitions of forward and reverse voltage have to be changed for complex normalizing impedances. The relationships of matrices for complex normalizing impedance are shown to reduce to those for real normalizing impedance. The procedure for changing normalizing impedance is given, and its application for amplifier design is briefly described. The difference between circuit symmetry and physical symmetry is pointed out. Finally, it is shown how odd and even mode analysis arises from a mathematical consideration of symmetrical two-port networks. A straightforward discussion of Wilkinson power divider is given to illustrate the application of these modes. |
doi_str_mv | 10.1109/ACCESS.2022.3194262 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2698813787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9841551</ieee_id><doaj_id>oai_doaj_org_article_a414a2fa15cd4502b71872eb4cfd1e2a</doaj_id><sourcerecordid>2698813787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-261b1a6434ad928d4888f40a2374d253890bbffef48324af56fd4b78a9cf65a13</originalsourceid><addsrcrecordid>eNpNUU1rwkAUDKWFivUXeAn0HJt9-5HdowTbCkoP2l6Xl82uXUkTu4nQ_vtGI9J3ecMwM-_BRNGUpDNCUvU0z_PFZjODFGBGiWIg4CYaAREqoZyK23_4Ppq07T7tR_YUz0bRx9ai-fT1Lt4Y7DobTnCNXfA_sa_jRWVNjw1W8aLe-dqeBcnat6apjT10vqnbGOsyzisM3vXKM_UQ3TmsWju57HH0_rzY5q_J6u1lmc9XiQEpuwQEKQgKRhmWCmTJpJSOpQg0YyVwKlVaFM5ZxyQFho4LV7Iik6iMExwJHUfLIbdscK8PwX9h-NUNen0mmrDTGDpvKquREYbgkHBTMp5CkRGZgS2YcSWxgH3W45B1CM330bad3jfHUPfvaxBKSkIzmfUqOqhMaNo2WHe9SlJ96kMPfehTH_rSR--aDi5vrb06lGSEc0L_AK_-htM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2698813787</pqid></control><display><type>article</type><title>Teaching Scattering Matrix in Electrical Engineering-Misconceptions and Clarifications</title><source>IEEE Xplore Open Access Journals</source><creator>Haldar, Manas Kumar ; Hlaing, Ngu War ; Su, Hieng T. ; Farzamnia, Ali ; FAN, Liau Chung</creator><creatorcontrib>Haldar, Manas Kumar ; Hlaing, Ngu War ; Su, Hieng T. ; Farzamnia, Ali ; FAN, Liau Chung</creatorcontrib><description>This paper presents a new approach to introducing scattering parameters for dispelling doubts and misconceptions. Normalization of voltage and current is first introduced for the subsequent descriptions of normalized matrices. The analogy with lossless transmission lines is used to define voltage waves in terms of circuit voltages and currents. Scattering parameters are interpreted as reflection and transmission coefficients for real normalizing impedance. Power considerations are made to interpret scattering parameters as power ratios. The condition for the lossless circuit is derived, and it is shown that the definitions of the voltage waves satisfy maximum power transfer conditions for real input impedance. Reciprocity conditions are derived to show that the normalized, not the unnormalized scattering matrix, is symmetric. The application of losslessness and reciprocity in filter design is clarified. Next, it is shown why definitions of forward and reverse voltage have to be changed for complex normalizing impedances. The relationships of matrices for complex normalizing impedance are shown to reduce to those for real normalizing impedance. The procedure for changing normalizing impedance is given, and its application for amplifier design is briefly described. The difference between circuit symmetry and physical symmetry is pointed out. Finally, it is shown how odd and even mode analysis arises from a mathematical consideration of symmetrical two-port networks. A straightforward discussion of Wilkinson power divider is given to illustrate the application of these modes.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3194262</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Amplifier ; Amplifier design ; Circuit design ; Circuits ; Electric potential ; filter ; Filter design (mathematics) ; Impedance ; Impedance measurement ; Input impedance ; lossless network ; Mathematical analysis ; Maximum power transfer ; Normalizing ; power divider ; Power dividers ; Reciprocity ; reference impedance ; S matrix theory ; S parameters ; Scattering ; scattering matrix ; Scattering parameters ; Symmetric matrices ; Symmetry ; Transmission line matrix methods ; Transmission lines ; Voltage</subject><ispartof>IEEE access, 2022, Vol.10, p.79249-79263</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-261b1a6434ad928d4888f40a2374d253890bbffef48324af56fd4b78a9cf65a13</cites><orcidid>0000-0001-8618-7256 ; 0000-0001-5797-8999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9841551$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Haldar, Manas Kumar</creatorcontrib><creatorcontrib>Hlaing, Ngu War</creatorcontrib><creatorcontrib>Su, Hieng T.</creatorcontrib><creatorcontrib>Farzamnia, Ali</creatorcontrib><creatorcontrib>FAN, Liau Chung</creatorcontrib><title>Teaching Scattering Matrix in Electrical Engineering-Misconceptions and Clarifications</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper presents a new approach to introducing scattering parameters for dispelling doubts and misconceptions. Normalization of voltage and current is first introduced for the subsequent descriptions of normalized matrices. The analogy with lossless transmission lines is used to define voltage waves in terms of circuit voltages and currents. Scattering parameters are interpreted as reflection and transmission coefficients for real normalizing impedance. Power considerations are made to interpret scattering parameters as power ratios. The condition for the lossless circuit is derived, and it is shown that the definitions of the voltage waves satisfy maximum power transfer conditions for real input impedance. Reciprocity conditions are derived to show that the normalized, not the unnormalized scattering matrix, is symmetric. The application of losslessness and reciprocity in filter design is clarified. Next, it is shown why definitions of forward and reverse voltage have to be changed for complex normalizing impedances. The relationships of matrices for complex normalizing impedance are shown to reduce to those for real normalizing impedance. The procedure for changing normalizing impedance is given, and its application for amplifier design is briefly described. The difference between circuit symmetry and physical symmetry is pointed out. Finally, it is shown how odd and even mode analysis arises from a mathematical consideration of symmetrical two-port networks. A straightforward discussion of Wilkinson power divider is given to illustrate the application of these modes.</description><subject>Amplifier</subject><subject>Amplifier design</subject><subject>Circuit design</subject><subject>Circuits</subject><subject>Electric potential</subject><subject>filter</subject><subject>Filter design (mathematics)</subject><subject>Impedance</subject><subject>Impedance measurement</subject><subject>Input impedance</subject><subject>lossless network</subject><subject>Mathematical analysis</subject><subject>Maximum power transfer</subject><subject>Normalizing</subject><subject>power divider</subject><subject>Power dividers</subject><subject>Reciprocity</subject><subject>reference impedance</subject><subject>S matrix theory</subject><subject>S parameters</subject><subject>Scattering</subject><subject>scattering matrix</subject><subject>Scattering parameters</subject><subject>Symmetric matrices</subject><subject>Symmetry</subject><subject>Transmission line matrix methods</subject><subject>Transmission lines</subject><subject>Voltage</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rwkAUDKWFivUXeAn0HJt9-5HdowTbCkoP2l6Xl82uXUkTu4nQ_vtGI9J3ecMwM-_BRNGUpDNCUvU0z_PFZjODFGBGiWIg4CYaAREqoZyK23_4Ppq07T7tR_YUz0bRx9ai-fT1Lt4Y7DobTnCNXfA_sa_jRWVNjw1W8aLe-dqeBcnat6apjT10vqnbGOsyzisM3vXKM_UQ3TmsWju57HH0_rzY5q_J6u1lmc9XiQEpuwQEKQgKRhmWCmTJpJSOpQg0YyVwKlVaFM5ZxyQFho4LV7Iik6iMExwJHUfLIbdscK8PwX9h-NUNen0mmrDTGDpvKquREYbgkHBTMp5CkRGZgS2YcSWxgH3W45B1CM330bad3jfHUPfvaxBKSkIzmfUqOqhMaNo2WHe9SlJ96kMPfehTH_rSR--aDi5vrb06lGSEc0L_AK_-htM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Haldar, Manas Kumar</creator><creator>Hlaing, Ngu War</creator><creator>Su, Hieng T.</creator><creator>Farzamnia, Ali</creator><creator>FAN, Liau Chung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8618-7256</orcidid><orcidid>https://orcid.org/0000-0001-5797-8999</orcidid></search><sort><creationdate>2022</creationdate><title>Teaching Scattering Matrix in Electrical Engineering-Misconceptions and Clarifications</title><author>Haldar, Manas Kumar ; Hlaing, Ngu War ; Su, Hieng T. ; Farzamnia, Ali ; FAN, Liau Chung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-261b1a6434ad928d4888f40a2374d253890bbffef48324af56fd4b78a9cf65a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amplifier</topic><topic>Amplifier design</topic><topic>Circuit design</topic><topic>Circuits</topic><topic>Electric potential</topic><topic>filter</topic><topic>Filter design (mathematics)</topic><topic>Impedance</topic><topic>Impedance measurement</topic><topic>Input impedance</topic><topic>lossless network</topic><topic>Mathematical analysis</topic><topic>Maximum power transfer</topic><topic>Normalizing</topic><topic>power divider</topic><topic>Power dividers</topic><topic>Reciprocity</topic><topic>reference impedance</topic><topic>S matrix theory</topic><topic>S parameters</topic><topic>Scattering</topic><topic>scattering matrix</topic><topic>Scattering parameters</topic><topic>Symmetric matrices</topic><topic>Symmetry</topic><topic>Transmission line matrix methods</topic><topic>Transmission lines</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haldar, Manas Kumar</creatorcontrib><creatorcontrib>Hlaing, Ngu War</creatorcontrib><creatorcontrib>Su, Hieng T.</creatorcontrib><creatorcontrib>Farzamnia, Ali</creatorcontrib><creatorcontrib>FAN, Liau Chung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haldar, Manas Kumar</au><au>Hlaing, Ngu War</au><au>Su, Hieng T.</au><au>Farzamnia, Ali</au><au>FAN, Liau Chung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Teaching Scattering Matrix in Electrical Engineering-Misconceptions and Clarifications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>79249</spage><epage>79263</epage><pages>79249-79263</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper presents a new approach to introducing scattering parameters for dispelling doubts and misconceptions. Normalization of voltage and current is first introduced for the subsequent descriptions of normalized matrices. The analogy with lossless transmission lines is used to define voltage waves in terms of circuit voltages and currents. Scattering parameters are interpreted as reflection and transmission coefficients for real normalizing impedance. Power considerations are made to interpret scattering parameters as power ratios. The condition for the lossless circuit is derived, and it is shown that the definitions of the voltage waves satisfy maximum power transfer conditions for real input impedance. Reciprocity conditions are derived to show that the normalized, not the unnormalized scattering matrix, is symmetric. The application of losslessness and reciprocity in filter design is clarified. Next, it is shown why definitions of forward and reverse voltage have to be changed for complex normalizing impedances. The relationships of matrices for complex normalizing impedance are shown to reduce to those for real normalizing impedance. The procedure for changing normalizing impedance is given, and its application for amplifier design is briefly described. The difference between circuit symmetry and physical symmetry is pointed out. Finally, it is shown how odd and even mode analysis arises from a mathematical consideration of symmetrical two-port networks. A straightforward discussion of Wilkinson power divider is given to illustrate the application of these modes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3194262</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8618-7256</orcidid><orcidid>https://orcid.org/0000-0001-5797-8999</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.79249-79263 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2698813787 |
source | IEEE Xplore Open Access Journals |
subjects | Amplifier Amplifier design Circuit design Circuits Electric potential filter Filter design (mathematics) Impedance Impedance measurement Input impedance lossless network Mathematical analysis Maximum power transfer Normalizing power divider Power dividers Reciprocity reference impedance S matrix theory S parameters Scattering scattering matrix Scattering parameters Symmetric matrices Symmetry Transmission line matrix methods Transmission lines Voltage |
title | Teaching Scattering Matrix in Electrical Engineering-Misconceptions and Clarifications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Teaching%20Scattering%20Matrix%20in%20Electrical%20Engineering-Misconceptions%20and%20Clarifications&rft.jtitle=IEEE%20access&rft.au=Haldar,%20Manas%20Kumar&rft.date=2022&rft.volume=10&rft.spage=79249&rft.epage=79263&rft.pages=79249-79263&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3194262&rft_dat=%3Cproquest_doaj_%3E2698813787%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-261b1a6434ad928d4888f40a2374d253890bbffef48324af56fd4b78a9cf65a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2698813787&rft_id=info:pmid/&rft_ieee_id=9841551&rfr_iscdi=true |