Loading…

Asymptotically consistent and computationally efficient modeling of short-ranged molecular interactions between curved slender fibers undergoing large 3D deformations

This article proposes a novel computational modeling approach for short-ranged molecular interactions between curved slender fibers undergoing large 3D deformations, and gives a detailed overview how it fits into the framework of existing fiber or beam interaction models, either considering microsca...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-08
Main Authors: Grill, Maximilian J, Wall, Wolfgang A, Meier, Christoph
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article proposes a novel computational modeling approach for short-ranged molecular interactions between curved slender fibers undergoing large 3D deformations, and gives a detailed overview how it fits into the framework of existing fiber or beam interaction models, either considering microscale molecular or macroscale contact effects. The direct evaluation of a molecular interaction potential between two general bodies in 3D space would require to integrate molecule densities over two 3D volumes, leading to a sixfold integral to be solved numerically. By exploiting the short-range nature of the considered class of interaction potentials as well as the fundamental kinematic assumption of undeformable fiber cross-sections, as typically applied in mechanical beam theories, a recently derived, closed-form analytical solution is applied for the interaction potential between a given section of the first fiber (slave beam) and the entire second fiber (master beam). This novel approach based on a pre-defined section-beam interaction potential (SBIP) requires only one single integration step along the slave beam length to be performed numerically. In terms of accuracy, the total beam-beam interaction potential resulting from this approach is shown to exhibit an asymptotically consistent angular and distance scaling behavior. In addition to elementary two-fiber systems, carefully chosen to verify accuracy and asymptotic consistence of the proposed SBIP approach, a potential practical application in form of adhesive nanofiber-grafted surfaces is studied. Involving a large number of helicoidal fibers undergoing large 3D deformations, arbitrary mutual fiber orientations as well as frequent local fiber pull-off and snap-into-contact events, this example demonstrates the robustness and computational efficiency of the new approach.
ISSN:2331-8422