Loading…

Towards Low Cost and Sustainable Thin Film Thermoelectric Devices Based on Quaternary Chalcogenides

A major challenge in thermoelectrics (TEs) is developing devices made of sustainable, abundant, and non‐toxic materials. Furthermore, the technological drive toward low sizes makes crucial the study of nano and micro configurations. In this work, thin film TE devices based on p‐type Cu2+xZn1‐xSnS4 a...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2022-08, Vol.32 (32), p.n/a
Main Authors: Isotta, Eleonora, Andrade‐Arvizu, Jacob, Syafiq, Ubaidah, Jiménez‐Arguijo, Alex, Navarro‐Güell, Alejandro, Guc, Maxim, Saucedo, Edgardo, Scardi, Paolo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4237-71a9ba4586dd47bd6e070ffb7e1534fcae5c1e74e75337399c1b9ef1d81a307e3
cites cdi_FETCH-LOGICAL-c4237-71a9ba4586dd47bd6e070ffb7e1534fcae5c1e74e75337399c1b9ef1d81a307e3
container_end_page n/a
container_issue 32
container_start_page
container_title Advanced functional materials
container_volume 32
creator Isotta, Eleonora
Andrade‐Arvizu, Jacob
Syafiq, Ubaidah
Jiménez‐Arguijo, Alex
Navarro‐Güell, Alejandro
Guc, Maxim
Saucedo, Edgardo
Scardi, Paolo
description A major challenge in thermoelectrics (TEs) is developing devices made of sustainable, abundant, and non‐toxic materials. Furthermore, the technological drive toward low sizes makes crucial the study of nano and micro configurations. In this work, thin film TE devices based on p‐type Cu2+xZn1‐xSnS4 and Cu2+xZn1‐xSnSe4, and n‐type AlyZn1‐yO are fabricated by physical vapor deposition. The kesterite phases show good purity and promising TE power factor, likely enhanced by the copper–zinc order–disorder transition. Thin film generators in planar configuration are assembled by a sequential deposition of the p‐type, n‐type, and contact materials. The power per unit planar area reaches 153 and 279 nW cm−2 for the sulphur‐ and selenium‐based generators, respectively. These values significantly outperform any other literature attempt based on sustainable and low‐cost thin films. Furthermore, if compared with traditional TEs often made of scarce and toxic materials, these devices offer a cost reduction above 80%. This allows reaching comparable values of power density per unit material cost, representing a first real step toward the development of sustainable and non‐toxic thin film TE devices. These can find applications in micro energy harvesters, microelectronics coolers, and temperature controllers for wearables, medical appliances, and sensors for the internet of things. Thermoelectric (TE) devices have potential for micro energy generation, cooling, and temperature control, but a real technological development requires cheap and sustainable materials. Functioning thin film TE devices entirely based on earth‐abundant, nontoxic, and costeffective kesterites and Al‐doped ZnO are developed and show a record performance of 1.86 nW K−1 cm−2 with a 80% cost abatement with respect to traditional TE.
doi_str_mv 10.1002/adfm.202202157
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2699835502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2699835502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4237-71a9ba4586dd47bd6e070ffb7e1534fcae5c1e74e75337399c1b9ef1d81a307e3</originalsourceid><addsrcrecordid>eNqFkMFLwzAYxYMoOKdXzwHPnUnTNs1xdk6FiYgTvIU0-eoy2mYmrWP_vR2TeRQ-eO_wex-Ph9A1JRNKSHyrTNVMYhIPR1N-gkY0o1nESJyfHj39OEcXIawJoZyzZIT00m2VNwEv3BYXLnRYtQa_9aFTtlVlDXi5si2e27oZHPjGQQ2681bjGXxbDQHfqQAGuxa_9qoD3yq_w8VK1dp9QmsNhEt0Vqk6wNWvjtH7_H5ZPEaLl4enYrqIdBIzHnGqRKmSNM-MSXhpMiCcVFXJgaYsqbSCVFPgCfCUMc6E0LQUUFGTU8UIBzZGN4e_G---egidXLt-6FMHGWdC5CxNSTxQkwOlvQvBQyU33jZDaUmJ3A8p90PK45BDQBwCW1vD7h9aTmfz57_sD45Ld9Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699835502</pqid></control><display><type>article</type><title>Towards Low Cost and Sustainable Thin Film Thermoelectric Devices Based on Quaternary Chalcogenides</title><source>Wiley</source><creator>Isotta, Eleonora ; Andrade‐Arvizu, Jacob ; Syafiq, Ubaidah ; Jiménez‐Arguijo, Alex ; Navarro‐Güell, Alejandro ; Guc, Maxim ; Saucedo, Edgardo ; Scardi, Paolo</creator><creatorcontrib>Isotta, Eleonora ; Andrade‐Arvizu, Jacob ; Syafiq, Ubaidah ; Jiménez‐Arguijo, Alex ; Navarro‐Güell, Alejandro ; Guc, Maxim ; Saucedo, Edgardo ; Scardi, Paolo</creatorcontrib><description>A major challenge in thermoelectrics (TEs) is developing devices made of sustainable, abundant, and non‐toxic materials. Furthermore, the technological drive toward low sizes makes crucial the study of nano and micro configurations. In this work, thin film TE devices based on p‐type Cu2+xZn1‐xSnS4 and Cu2+xZn1‐xSnSe4, and n‐type AlyZn1‐yO are fabricated by physical vapor deposition. The kesterite phases show good purity and promising TE power factor, likely enhanced by the copper–zinc order–disorder transition. Thin film generators in planar configuration are assembled by a sequential deposition of the p‐type, n‐type, and contact materials. The power per unit planar area reaches 153 and 279 nW cm−2 for the sulphur‐ and selenium‐based generators, respectively. These values significantly outperform any other literature attempt based on sustainable and low‐cost thin films. Furthermore, if compared with traditional TEs often made of scarce and toxic materials, these devices offer a cost reduction above 80%. This allows reaching comparable values of power density per unit material cost, representing a first real step toward the development of sustainable and non‐toxic thin film TE devices. These can find applications in micro energy harvesters, microelectronics coolers, and temperature controllers for wearables, medical appliances, and sensors for the internet of things. Thermoelectric (TE) devices have potential for micro energy generation, cooling, and temperature control, but a real technological development requires cheap and sustainable materials. Functioning thin film TE devices entirely based on earth‐abundant, nontoxic, and costeffective kesterites and Al‐doped ZnO are developed and show a record performance of 1.86 nW K−1 cm−2 with a 80% cost abatement with respect to traditional TE.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202202157</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Al‐doped ZnO (AZO) ; Configurations ; Coolers ; Devices ; Energy harvesting ; Generators ; Hazardous materials ; Internet of Things ; kesterite CZTS CZTSe ; Materials science ; Physical vapor deposition ; Power factor ; Selenium ; thermoelectric generators ; thermoelectricity ; Thin films</subject><ispartof>Advanced functional materials, 2022-08, Vol.32 (32), p.n/a</ispartof><rights>2022 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4237-71a9ba4586dd47bd6e070ffb7e1534fcae5c1e74e75337399c1b9ef1d81a307e3</citedby><cites>FETCH-LOGICAL-c4237-71a9ba4586dd47bd6e070ffb7e1534fcae5c1e74e75337399c1b9ef1d81a307e3</cites><orcidid>0000-0003-1097-3917 ; 0000-0002-5864-463X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Isotta, Eleonora</creatorcontrib><creatorcontrib>Andrade‐Arvizu, Jacob</creatorcontrib><creatorcontrib>Syafiq, Ubaidah</creatorcontrib><creatorcontrib>Jiménez‐Arguijo, Alex</creatorcontrib><creatorcontrib>Navarro‐Güell, Alejandro</creatorcontrib><creatorcontrib>Guc, Maxim</creatorcontrib><creatorcontrib>Saucedo, Edgardo</creatorcontrib><creatorcontrib>Scardi, Paolo</creatorcontrib><title>Towards Low Cost and Sustainable Thin Film Thermoelectric Devices Based on Quaternary Chalcogenides</title><title>Advanced functional materials</title><description>A major challenge in thermoelectrics (TEs) is developing devices made of sustainable, abundant, and non‐toxic materials. Furthermore, the technological drive toward low sizes makes crucial the study of nano and micro configurations. In this work, thin film TE devices based on p‐type Cu2+xZn1‐xSnS4 and Cu2+xZn1‐xSnSe4, and n‐type AlyZn1‐yO are fabricated by physical vapor deposition. The kesterite phases show good purity and promising TE power factor, likely enhanced by the copper–zinc order–disorder transition. Thin film generators in planar configuration are assembled by a sequential deposition of the p‐type, n‐type, and contact materials. The power per unit planar area reaches 153 and 279 nW cm−2 for the sulphur‐ and selenium‐based generators, respectively. These values significantly outperform any other literature attempt based on sustainable and low‐cost thin films. Furthermore, if compared with traditional TEs often made of scarce and toxic materials, these devices offer a cost reduction above 80%. This allows reaching comparable values of power density per unit material cost, representing a first real step toward the development of sustainable and non‐toxic thin film TE devices. These can find applications in micro energy harvesters, microelectronics coolers, and temperature controllers for wearables, medical appliances, and sensors for the internet of things. Thermoelectric (TE) devices have potential for micro energy generation, cooling, and temperature control, but a real technological development requires cheap and sustainable materials. Functioning thin film TE devices entirely based on earth‐abundant, nontoxic, and costeffective kesterites and Al‐doped ZnO are developed and show a record performance of 1.86 nW K−1 cm−2 with a 80% cost abatement with respect to traditional TE.</description><subject>Al‐doped ZnO (AZO)</subject><subject>Configurations</subject><subject>Coolers</subject><subject>Devices</subject><subject>Energy harvesting</subject><subject>Generators</subject><subject>Hazardous materials</subject><subject>Internet of Things</subject><subject>kesterite CZTS CZTSe</subject><subject>Materials science</subject><subject>Physical vapor deposition</subject><subject>Power factor</subject><subject>Selenium</subject><subject>thermoelectric generators</subject><subject>thermoelectricity</subject><subject>Thin films</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMFLwzAYxYMoOKdXzwHPnUnTNs1xdk6FiYgTvIU0-eoy2mYmrWP_vR2TeRQ-eO_wex-Ph9A1JRNKSHyrTNVMYhIPR1N-gkY0o1nESJyfHj39OEcXIawJoZyzZIT00m2VNwEv3BYXLnRYtQa_9aFTtlVlDXi5si2e27oZHPjGQQ2681bjGXxbDQHfqQAGuxa_9qoD3yq_w8VK1dp9QmsNhEt0Vqk6wNWvjtH7_H5ZPEaLl4enYrqIdBIzHnGqRKmSNM-MSXhpMiCcVFXJgaYsqbSCVFPgCfCUMc6E0LQUUFGTU8UIBzZGN4e_G---egidXLt-6FMHGWdC5CxNSTxQkwOlvQvBQyU33jZDaUmJ3A8p90PK45BDQBwCW1vD7h9aTmfz57_sD45Ld9Y</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Isotta, Eleonora</creator><creator>Andrade‐Arvizu, Jacob</creator><creator>Syafiq, Ubaidah</creator><creator>Jiménez‐Arguijo, Alex</creator><creator>Navarro‐Güell, Alejandro</creator><creator>Guc, Maxim</creator><creator>Saucedo, Edgardo</creator><creator>Scardi, Paolo</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1097-3917</orcidid><orcidid>https://orcid.org/0000-0002-5864-463X</orcidid></search><sort><creationdate>20220801</creationdate><title>Towards Low Cost and Sustainable Thin Film Thermoelectric Devices Based on Quaternary Chalcogenides</title><author>Isotta, Eleonora ; Andrade‐Arvizu, Jacob ; Syafiq, Ubaidah ; Jiménez‐Arguijo, Alex ; Navarro‐Güell, Alejandro ; Guc, Maxim ; Saucedo, Edgardo ; Scardi, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4237-71a9ba4586dd47bd6e070ffb7e1534fcae5c1e74e75337399c1b9ef1d81a307e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Al‐doped ZnO (AZO)</topic><topic>Configurations</topic><topic>Coolers</topic><topic>Devices</topic><topic>Energy harvesting</topic><topic>Generators</topic><topic>Hazardous materials</topic><topic>Internet of Things</topic><topic>kesterite CZTS CZTSe</topic><topic>Materials science</topic><topic>Physical vapor deposition</topic><topic>Power factor</topic><topic>Selenium</topic><topic>thermoelectric generators</topic><topic>thermoelectricity</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isotta, Eleonora</creatorcontrib><creatorcontrib>Andrade‐Arvizu, Jacob</creatorcontrib><creatorcontrib>Syafiq, Ubaidah</creatorcontrib><creatorcontrib>Jiménez‐Arguijo, Alex</creatorcontrib><creatorcontrib>Navarro‐Güell, Alejandro</creatorcontrib><creatorcontrib>Guc, Maxim</creatorcontrib><creatorcontrib>Saucedo, Edgardo</creatorcontrib><creatorcontrib>Scardi, Paolo</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Isotta, Eleonora</au><au>Andrade‐Arvizu, Jacob</au><au>Syafiq, Ubaidah</au><au>Jiménez‐Arguijo, Alex</au><au>Navarro‐Güell, Alejandro</au><au>Guc, Maxim</au><au>Saucedo, Edgardo</au><au>Scardi, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Low Cost and Sustainable Thin Film Thermoelectric Devices Based on Quaternary Chalcogenides</atitle><jtitle>Advanced functional materials</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>32</volume><issue>32</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>A major challenge in thermoelectrics (TEs) is developing devices made of sustainable, abundant, and non‐toxic materials. Furthermore, the technological drive toward low sizes makes crucial the study of nano and micro configurations. In this work, thin film TE devices based on p‐type Cu2+xZn1‐xSnS4 and Cu2+xZn1‐xSnSe4, and n‐type AlyZn1‐yO are fabricated by physical vapor deposition. The kesterite phases show good purity and promising TE power factor, likely enhanced by the copper–zinc order–disorder transition. Thin film generators in planar configuration are assembled by a sequential deposition of the p‐type, n‐type, and contact materials. The power per unit planar area reaches 153 and 279 nW cm−2 for the sulphur‐ and selenium‐based generators, respectively. These values significantly outperform any other literature attempt based on sustainable and low‐cost thin films. Furthermore, if compared with traditional TEs often made of scarce and toxic materials, these devices offer a cost reduction above 80%. This allows reaching comparable values of power density per unit material cost, representing a first real step toward the development of sustainable and non‐toxic thin film TE devices. These can find applications in micro energy harvesters, microelectronics coolers, and temperature controllers for wearables, medical appliances, and sensors for the internet of things. Thermoelectric (TE) devices have potential for micro energy generation, cooling, and temperature control, but a real technological development requires cheap and sustainable materials. Functioning thin film TE devices entirely based on earth‐abundant, nontoxic, and costeffective kesterites and Al‐doped ZnO are developed and show a record performance of 1.86 nW K−1 cm−2 with a 80% cost abatement with respect to traditional TE.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202202157</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1097-3917</orcidid><orcidid>https://orcid.org/0000-0002-5864-463X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-08, Vol.32 (32), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2699835502
source Wiley
subjects Al‐doped ZnO (AZO)
Configurations
Coolers
Devices
Energy harvesting
Generators
Hazardous materials
Internet of Things
kesterite CZTS CZTSe
Materials science
Physical vapor deposition
Power factor
Selenium
thermoelectric generators
thermoelectricity
Thin films
title Towards Low Cost and Sustainable Thin Film Thermoelectric Devices Based on Quaternary Chalcogenides
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Low%20Cost%20and%20Sustainable%20Thin%20Film%20Thermoelectric%20Devices%20Based%20on%20Quaternary%20Chalcogenides&rft.jtitle=Advanced%20functional%20materials&rft.au=Isotta,%20Eleonora&rft.date=2022-08-01&rft.volume=32&rft.issue=32&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202202157&rft_dat=%3Cproquest_cross%3E2699835502%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4237-71a9ba4586dd47bd6e070ffb7e1534fcae5c1e74e75337399c1b9ef1d81a307e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2699835502&rft_id=info:pmid/&rfr_iscdi=true