Loading…
Testing the volatility jumps based on the high frequency data
This article tests volatility jumps based on the high frequency data. Under the null hypothesis that the volatility process is a continuous semimartingale, our test statistic converges to a normal distribution, and under the alternative hypothesis where the volatility has jumps, the statistic diverg...
Saved in:
Published in: | Journal of time series analysis 2022-09, Vol.43 (5), p.669-694 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3344-e527d81b3c27a0c4dc498eb1c18a2ef4d179072321efed6fd062a53951a58bf83 |
---|---|
cites | cdi_FETCH-LOGICAL-c3344-e527d81b3c27a0c4dc498eb1c18a2ef4d179072321efed6fd062a53951a58bf83 |
container_end_page | 694 |
container_issue | 5 |
container_start_page | 669 |
container_title | Journal of time series analysis |
container_volume | 43 |
creator | Liu, Guangying Liu, Meiyao Lin, Jinguan |
description | This article tests volatility jumps based on the high frequency data. Under the null hypothesis that the volatility process is a continuous semimartingale, our test statistic converges to a normal distribution, and under the alternative hypothesis where the volatility has jumps, the statistic diverges to infinity. Compared to the test statistic of Bibinger et al. (Bibinger et al. (2017). Annals of Statistics 45, 1542–1578), our proposed statistic diverges to infinity at a faster rate, and has a better power. Simulation studies confirm the theoretical results, and an empirical analysis shows that some real financial data possess volatility jumps. |
doi_str_mv | 10.1111/jtsa.12634 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2700052007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700052007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3344-e527d81b3c27a0c4dc498eb1c18a2ef4d179072321efed6fd062a53951a58bf83</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqWw8AsssSGl-GwndgaGqqJ8qBIDZbYcf7SJ0qTYKSj_nrRh5pYb7nnvlR6EboHMYJiHqot6BjRj_AxNgGciyWVOz9GEAGdJLiS9RFcxVoRAxgVM0OPaxa5sNrjbOvzd1ror67LrcXXY7SMudHQWt83pui03W-yD-zq4xvTY6k5fowuv6-hu_vYUfS6f1ouXZPX-_LqYrxLDGOeJS6mwEgpmqNDEcGt4Ll0BBqSmznMLIieCMgrOO5t5SzKqU5anoFNZeMmm6G78uw_tUB87VbWH0AyVigpCSEoJEQN1P1ImtDEG59U-lDsdegVEHfWoox510jPAMMI_Ze36f0j1tv6Yj5lf7f9m9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700052007</pqid></control><display><type>article</type><title>Testing the volatility jumps based on the high frequency data</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Liu, Guangying ; Liu, Meiyao ; Lin, Jinguan</creator><creatorcontrib>Liu, Guangying ; Liu, Meiyao ; Lin, Jinguan</creatorcontrib><description>This article tests volatility jumps based on the high frequency data. Under the null hypothesis that the volatility process is a continuous semimartingale, our test statistic converges to a normal distribution, and under the alternative hypothesis where the volatility has jumps, the statistic diverges to infinity. Compared to the test statistic of Bibinger et al. (Bibinger et al. (2017). Annals of Statistics 45, 1542–1578), our proposed statistic diverges to infinity at a faster rate, and has a better power. Simulation studies confirm the theoretical results, and an empirical analysis shows that some real financial data possess volatility jumps.</description><identifier>ISSN: 0143-9782</identifier><identifier>EISSN: 1467-9892</identifier><identifier>DOI: 10.1111/jtsa.12634</identifier><language>eng</language><publisher>Oxford, UK: John Wiley & Sons, Ltd</publisher><subject>Central limit theorem ; Empirical analysis ; High frequencies ; high frequency data ; Infinity ; Normal distribution ; Null hypothesis ; semimartingale ; Simulation ; Statistical analysis ; Volatility ; Volatility jumps</subject><ispartof>Journal of time series analysis, 2022-09, Vol.43 (5), p.669-694</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3344-e527d81b3c27a0c4dc498eb1c18a2ef4d179072321efed6fd062a53951a58bf83</citedby><cites>FETCH-LOGICAL-c3344-e527d81b3c27a0c4dc498eb1c18a2ef4d179072321efed6fd062a53951a58bf83</cites><orcidid>0000-0001-6329-2555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223</link.rule.ids></links><search><creatorcontrib>Liu, Guangying</creatorcontrib><creatorcontrib>Liu, Meiyao</creatorcontrib><creatorcontrib>Lin, Jinguan</creatorcontrib><title>Testing the volatility jumps based on the high frequency data</title><title>Journal of time series analysis</title><description>This article tests volatility jumps based on the high frequency data. Under the null hypothesis that the volatility process is a continuous semimartingale, our test statistic converges to a normal distribution, and under the alternative hypothesis where the volatility has jumps, the statistic diverges to infinity. Compared to the test statistic of Bibinger et al. (Bibinger et al. (2017). Annals of Statistics 45, 1542–1578), our proposed statistic diverges to infinity at a faster rate, and has a better power. Simulation studies confirm the theoretical results, and an empirical analysis shows that some real financial data possess volatility jumps.</description><subject>Central limit theorem</subject><subject>Empirical analysis</subject><subject>High frequencies</subject><subject>high frequency data</subject><subject>Infinity</subject><subject>Normal distribution</subject><subject>Null hypothesis</subject><subject>semimartingale</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Volatility</subject><subject>Volatility jumps</subject><issn>0143-9782</issn><issn>1467-9892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp9kD1PwzAQhi0EEqWw8AsssSGl-GwndgaGqqJ8qBIDZbYcf7SJ0qTYKSj_nrRh5pYb7nnvlR6EboHMYJiHqot6BjRj_AxNgGciyWVOz9GEAGdJLiS9RFcxVoRAxgVM0OPaxa5sNrjbOvzd1ror67LrcXXY7SMudHQWt83pui03W-yD-zq4xvTY6k5fowuv6-hu_vYUfS6f1ouXZPX-_LqYrxLDGOeJS6mwEgpmqNDEcGt4Ll0BBqSmznMLIieCMgrOO5t5SzKqU5anoFNZeMmm6G78uw_tUB87VbWH0AyVigpCSEoJEQN1P1ImtDEG59U-lDsdegVEHfWoox510jPAMMI_Ze36f0j1tv6Yj5lf7f9m9Q</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Liu, Guangying</creator><creator>Liu, Meiyao</creator><creator>Lin, Jinguan</creator><general>John Wiley & Sons, Ltd</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-6329-2555</orcidid></search><sort><creationdate>202209</creationdate><title>Testing the volatility jumps based on the high frequency data</title><author>Liu, Guangying ; Liu, Meiyao ; Lin, Jinguan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3344-e527d81b3c27a0c4dc498eb1c18a2ef4d179072321efed6fd062a53951a58bf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Central limit theorem</topic><topic>Empirical analysis</topic><topic>High frequencies</topic><topic>high frequency data</topic><topic>Infinity</topic><topic>Normal distribution</topic><topic>Null hypothesis</topic><topic>semimartingale</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Volatility</topic><topic>Volatility jumps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Guangying</creatorcontrib><creatorcontrib>Liu, Meiyao</creatorcontrib><creatorcontrib>Lin, Jinguan</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of time series analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Guangying</au><au>Liu, Meiyao</au><au>Lin, Jinguan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing the volatility jumps based on the high frequency data</atitle><jtitle>Journal of time series analysis</jtitle><date>2022-09</date><risdate>2022</risdate><volume>43</volume><issue>5</issue><spage>669</spage><epage>694</epage><pages>669-694</pages><issn>0143-9782</issn><eissn>1467-9892</eissn><abstract>This article tests volatility jumps based on the high frequency data. Under the null hypothesis that the volatility process is a continuous semimartingale, our test statistic converges to a normal distribution, and under the alternative hypothesis where the volatility has jumps, the statistic diverges to infinity. Compared to the test statistic of Bibinger et al. (Bibinger et al. (2017). Annals of Statistics 45, 1542–1578), our proposed statistic diverges to infinity at a faster rate, and has a better power. Simulation studies confirm the theoretical results, and an empirical analysis shows that some real financial data possess volatility jumps.</abstract><cop>Oxford, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1111/jtsa.12634</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-6329-2555</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-9782 |
ispartof | Journal of time series analysis, 2022-09, Vol.43 (5), p.669-694 |
issn | 0143-9782 1467-9892 |
language | eng |
recordid | cdi_proquest_journals_2700052007 |
source | International Bibliography of the Social Sciences (IBSS); Wiley-Blackwell Read & Publish Collection |
subjects | Central limit theorem Empirical analysis High frequencies high frequency data Infinity Normal distribution Null hypothesis semimartingale Simulation Statistical analysis Volatility Volatility jumps |
title | Testing the volatility jumps based on the high frequency data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20the%20volatility%20jumps%20based%20on%20the%20high%20frequency%20data&rft.jtitle=Journal%20of%20time%20series%20analysis&rft.au=Liu,%20Guangying&rft.date=2022-09&rft.volume=43&rft.issue=5&rft.spage=669&rft.epage=694&rft.pages=669-694&rft.issn=0143-9782&rft.eissn=1467-9892&rft_id=info:doi/10.1111/jtsa.12634&rft_dat=%3Cproquest_cross%3E2700052007%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3344-e527d81b3c27a0c4dc498eb1c18a2ef4d179072321efed6fd062a53951a58bf83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2700052007&rft_id=info:pmid/&rfr_iscdi=true |