Loading…

Testing the volatility jumps based on the high frequency data

This article tests volatility jumps based on the high frequency data. Under the null hypothesis that the volatility process is a continuous semimartingale, our test statistic converges to a normal distribution, and under the alternative hypothesis where the volatility has jumps, the statistic diverg...

Full description

Saved in:
Bibliographic Details
Published in:Journal of time series analysis 2022-09, Vol.43 (5), p.669-694
Main Authors: Liu, Guangying, Liu, Meiyao, Lin, Jinguan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3344-e527d81b3c27a0c4dc498eb1c18a2ef4d179072321efed6fd062a53951a58bf83
cites cdi_FETCH-LOGICAL-c3344-e527d81b3c27a0c4dc498eb1c18a2ef4d179072321efed6fd062a53951a58bf83
container_end_page 694
container_issue 5
container_start_page 669
container_title Journal of time series analysis
container_volume 43
creator Liu, Guangying
Liu, Meiyao
Lin, Jinguan
description This article tests volatility jumps based on the high frequency data. Under the null hypothesis that the volatility process is a continuous semimartingale, our test statistic converges to a normal distribution, and under the alternative hypothesis where the volatility has jumps, the statistic diverges to infinity. Compared to the test statistic of Bibinger et al. (Bibinger et al. (2017). Annals of Statistics 45, 1542–1578), our proposed statistic diverges to infinity at a faster rate, and has a better power. Simulation studies confirm the theoretical results, and an empirical analysis shows that some real financial data possess volatility jumps.
doi_str_mv 10.1111/jtsa.12634
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2700052007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700052007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3344-e527d81b3c27a0c4dc498eb1c18a2ef4d179072321efed6fd062a53951a58bf83</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqWw8AsssSGl-GwndgaGqqJ8qBIDZbYcf7SJ0qTYKSj_nrRh5pYb7nnvlR6EboHMYJiHqot6BjRj_AxNgGciyWVOz9GEAGdJLiS9RFcxVoRAxgVM0OPaxa5sNrjbOvzd1ror67LrcXXY7SMudHQWt83pui03W-yD-zq4xvTY6k5fowuv6-hu_vYUfS6f1ouXZPX-_LqYrxLDGOeJS6mwEgpmqNDEcGt4Ll0BBqSmznMLIieCMgrOO5t5SzKqU5anoFNZeMmm6G78uw_tUB87VbWH0AyVigpCSEoJEQN1P1ImtDEG59U-lDsdegVEHfWoox510jPAMMI_Ze36f0j1tv6Yj5lf7f9m9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700052007</pqid></control><display><type>article</type><title>Testing the volatility jumps based on the high frequency data</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Liu, Guangying ; Liu, Meiyao ; Lin, Jinguan</creator><creatorcontrib>Liu, Guangying ; Liu, Meiyao ; Lin, Jinguan</creatorcontrib><description>This article tests volatility jumps based on the high frequency data. Under the null hypothesis that the volatility process is a continuous semimartingale, our test statistic converges to a normal distribution, and under the alternative hypothesis where the volatility has jumps, the statistic diverges to infinity. Compared to the test statistic of Bibinger et al. (Bibinger et al. (2017). Annals of Statistics 45, 1542–1578), our proposed statistic diverges to infinity at a faster rate, and has a better power. Simulation studies confirm the theoretical results, and an empirical analysis shows that some real financial data possess volatility jumps.</description><identifier>ISSN: 0143-9782</identifier><identifier>EISSN: 1467-9892</identifier><identifier>DOI: 10.1111/jtsa.12634</identifier><language>eng</language><publisher>Oxford, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Central limit theorem ; Empirical analysis ; High frequencies ; high frequency data ; Infinity ; Normal distribution ; Null hypothesis ; semimartingale ; Simulation ; Statistical analysis ; Volatility ; Volatility jumps</subject><ispartof>Journal of time series analysis, 2022-09, Vol.43 (5), p.669-694</ispartof><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3344-e527d81b3c27a0c4dc498eb1c18a2ef4d179072321efed6fd062a53951a58bf83</citedby><cites>FETCH-LOGICAL-c3344-e527d81b3c27a0c4dc498eb1c18a2ef4d179072321efed6fd062a53951a58bf83</cites><orcidid>0000-0001-6329-2555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223</link.rule.ids></links><search><creatorcontrib>Liu, Guangying</creatorcontrib><creatorcontrib>Liu, Meiyao</creatorcontrib><creatorcontrib>Lin, Jinguan</creatorcontrib><title>Testing the volatility jumps based on the high frequency data</title><title>Journal of time series analysis</title><description>This article tests volatility jumps based on the high frequency data. Under the null hypothesis that the volatility process is a continuous semimartingale, our test statistic converges to a normal distribution, and under the alternative hypothesis where the volatility has jumps, the statistic diverges to infinity. Compared to the test statistic of Bibinger et al. (Bibinger et al. (2017). Annals of Statistics 45, 1542–1578), our proposed statistic diverges to infinity at a faster rate, and has a better power. Simulation studies confirm the theoretical results, and an empirical analysis shows that some real financial data possess volatility jumps.</description><subject>Central limit theorem</subject><subject>Empirical analysis</subject><subject>High frequencies</subject><subject>high frequency data</subject><subject>Infinity</subject><subject>Normal distribution</subject><subject>Null hypothesis</subject><subject>semimartingale</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Volatility</subject><subject>Volatility jumps</subject><issn>0143-9782</issn><issn>1467-9892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp9kD1PwzAQhi0EEqWw8AsssSGl-GwndgaGqqJ8qBIDZbYcf7SJ0qTYKSj_nrRh5pYb7nnvlR6EboHMYJiHqot6BjRj_AxNgGciyWVOz9GEAGdJLiS9RFcxVoRAxgVM0OPaxa5sNrjbOvzd1ror67LrcXXY7SMudHQWt83pui03W-yD-zq4xvTY6k5fowuv6-hu_vYUfS6f1ouXZPX-_LqYrxLDGOeJS6mwEgpmqNDEcGt4Ll0BBqSmznMLIieCMgrOO5t5SzKqU5anoFNZeMmm6G78uw_tUB87VbWH0AyVigpCSEoJEQN1P1ImtDEG59U-lDsdegVEHfWoox510jPAMMI_Ze36f0j1tv6Yj5lf7f9m9Q</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Liu, Guangying</creator><creator>Liu, Meiyao</creator><creator>Lin, Jinguan</creator><general>John Wiley &amp; Sons, Ltd</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-6329-2555</orcidid></search><sort><creationdate>202209</creationdate><title>Testing the volatility jumps based on the high frequency data</title><author>Liu, Guangying ; Liu, Meiyao ; Lin, Jinguan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3344-e527d81b3c27a0c4dc498eb1c18a2ef4d179072321efed6fd062a53951a58bf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Central limit theorem</topic><topic>Empirical analysis</topic><topic>High frequencies</topic><topic>high frequency data</topic><topic>Infinity</topic><topic>Normal distribution</topic><topic>Null hypothesis</topic><topic>semimartingale</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Volatility</topic><topic>Volatility jumps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Guangying</creatorcontrib><creatorcontrib>Liu, Meiyao</creatorcontrib><creatorcontrib>Lin, Jinguan</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of time series analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Guangying</au><au>Liu, Meiyao</au><au>Lin, Jinguan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing the volatility jumps based on the high frequency data</atitle><jtitle>Journal of time series analysis</jtitle><date>2022-09</date><risdate>2022</risdate><volume>43</volume><issue>5</issue><spage>669</spage><epage>694</epage><pages>669-694</pages><issn>0143-9782</issn><eissn>1467-9892</eissn><abstract>This article tests volatility jumps based on the high frequency data. Under the null hypothesis that the volatility process is a continuous semimartingale, our test statistic converges to a normal distribution, and under the alternative hypothesis where the volatility has jumps, the statistic diverges to infinity. Compared to the test statistic of Bibinger et al. (Bibinger et al. (2017). Annals of Statistics 45, 1542–1578), our proposed statistic diverges to infinity at a faster rate, and has a better power. Simulation studies confirm the theoretical results, and an empirical analysis shows that some real financial data possess volatility jumps.</abstract><cop>Oxford, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1111/jtsa.12634</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-6329-2555</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0143-9782
ispartof Journal of time series analysis, 2022-09, Vol.43 (5), p.669-694
issn 0143-9782
1467-9892
language eng
recordid cdi_proquest_journals_2700052007
source International Bibliography of the Social Sciences (IBSS); Wiley-Blackwell Read & Publish Collection
subjects Central limit theorem
Empirical analysis
High frequencies
high frequency data
Infinity
Normal distribution
Null hypothesis
semimartingale
Simulation
Statistical analysis
Volatility
Volatility jumps
title Testing the volatility jumps based on the high frequency data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20the%20volatility%20jumps%20based%20on%20the%20high%20frequency%20data&rft.jtitle=Journal%20of%20time%20series%20analysis&rft.au=Liu,%20Guangying&rft.date=2022-09&rft.volume=43&rft.issue=5&rft.spage=669&rft.epage=694&rft.pages=669-694&rft.issn=0143-9782&rft.eissn=1467-9892&rft_id=info:doi/10.1111/jtsa.12634&rft_dat=%3Cproquest_cross%3E2700052007%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3344-e527d81b3c27a0c4dc498eb1c18a2ef4d179072321efed6fd062a53951a58bf83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2700052007&rft_id=info:pmid/&rfr_iscdi=true