Loading…
The effect of points dispersion on the k-nn search in random projection forests
Partitioning trees are efficient data structures for k -nearest neighbor search. Machine learning libraries commonly use a special type of partitioning trees called k d-trees to perform k -nn search. Unfortunately, k d-trees can be ineffective in high dimensions because they need more tree levels to...
Saved in:
Published in: | IEEE access 2022, Vol.10, p.1-1 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-42cd04ccaab7afc641da4c922217eacce20db41c35790541b2c8f2206421c593 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 10 |
creator | Alshammari, Mashaan Stavrakakis, John Ahmed, Adel F. Takatsuka, Masahiro |
description | Partitioning trees are efficient data structures for k -nearest neighbor search. Machine learning libraries commonly use a special type of partitioning trees called k d-trees to perform k -nn search. Unfortunately, k d-trees can be ineffective in high dimensions because they need more tree levels to decrease the vector quantization (VQ) error. Random projection trees rpTrees solve this scalability problem by using random directions to split the data. A collection of rpTrees is called rpForest. k -nn search in an rpForest is influenced by two factors: 1) the dispersion of points along the random direction and 2) the number of rpTrees in the rpForest. In this study, we investigate how these two factors affect the k -nn search with varying k values and different datasets. We found that with larger number of trees, the dispersion of points has a very limited effect on the k -nn search. One should use the original rpTree algorithm by picking a random direction regardless of the dispersion of points. |
doi_str_mv | 10.1109/ACCESS.2022.3195488 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2700412105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9846977</ieee_id><doaj_id>oai_doaj_org_article_e6790d76fc364bad88ef38a9acc2baa2</doaj_id><sourcerecordid>2700412105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-42cd04ccaab7afc641da4c922217eacce20db41c35790541b2c8f2206421c593</originalsourceid><addsrcrecordid>eNpNkVFrwyAUhWVssNL1F_RF2HM6vZpEH0vptkKhD-27GKNrsjZmmj7s388uZUwEL5fvnOvlIDSnZEEpkS_L1Wq93y-AACwYlTkX4g5NgBYyYzkr7v_Vj2gWY0vSEamVlxO0Oxwtts5ZM2DvcO-bboi4bmJvQ2x8h9MdEvKZdR2OVgdzxE2Hg-5qf8Z98G1SXjnng41DfEIPTp-ind3eKTq8rg-r92y7e9usltvMsFwMGQdTE26M1lWpnSk4rTU3EgBoabUxFkhdcZrgUpKc0wqMcACk4EBNLtkUbUbb2utW9aE56_CtvG7Ub8OHD6XD0JiTVbZIFnVZOMMKXulaCOuY0DJNgUprSF7Po1fa5uuSllCtv4Qu_V5BSQinQEmeKDZSJvgYg3V_UylR1xzUmIO65qBuOSTVfFQ11to_hRS8kGXJfgCviIQC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700412105</pqid></control><display><type>article</type><title>The effect of points dispersion on the k-nn search in random projection forests</title><source>IEEE Xplore Open Access Journals</source><creator>Alshammari, Mashaan ; Stavrakakis, John ; Ahmed, Adel F. ; Takatsuka, Masahiro</creator><creatorcontrib>Alshammari, Mashaan ; Stavrakakis, John ; Ahmed, Adel F. ; Takatsuka, Masahiro</creatorcontrib><description>Partitioning trees are efficient data structures for k -nearest neighbor search. Machine learning libraries commonly use a special type of partitioning trees called k d-trees to perform k -nn search. Unfortunately, k d-trees can be ineffective in high dimensions because they need more tree levels to decrease the vector quantization (VQ) error. Random projection trees rpTrees solve this scalability problem by using random directions to split the data. A collection of rpTrees is called rpForest. k -nn search in an rpForest is influenced by two factors: 1) the dispersion of points along the random direction and 2) the number of rpTrees in the rpForest. In this study, we investigate how these two factors affect the k -nn search with varying k values and different datasets. We found that with larger number of trees, the dispersion of points has a very limited effect on the k -nn search. One should use the original rpTree algorithm by picking a random direction regardless of the dispersion of points.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3195488</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -nearest neighbor search ; Algorithms ; Data structures ; Dispersion ; Forestry ; Libraries ; Licenses ; Machine learning ; Partitioning ; Partitioning algorithms ; Principal component analysis ; Random Projection Forests ; Random Projection Trees ; Searching ; Trees ; unsupervised learning ; Vector quantization</subject><ispartof>IEEE access, 2022, Vol.10, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-42cd04ccaab7afc641da4c922217eacce20db41c35790541b2c8f2206421c593</cites><orcidid>0000-0002-7864-0011 ; 0000-0002-0397-4260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9846977$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Alshammari, Mashaan</creatorcontrib><creatorcontrib>Stavrakakis, John</creatorcontrib><creatorcontrib>Ahmed, Adel F.</creatorcontrib><creatorcontrib>Takatsuka, Masahiro</creatorcontrib><title>The effect of points dispersion on the k-nn search in random projection forests</title><title>IEEE access</title><addtitle>Access</addtitle><description>Partitioning trees are efficient data structures for k -nearest neighbor search. Machine learning libraries commonly use a special type of partitioning trees called k d-trees to perform k -nn search. Unfortunately, k d-trees can be ineffective in high dimensions because they need more tree levels to decrease the vector quantization (VQ) error. Random projection trees rpTrees solve this scalability problem by using random directions to split the data. A collection of rpTrees is called rpForest. k -nn search in an rpForest is influenced by two factors: 1) the dispersion of points along the random direction and 2) the number of rpTrees in the rpForest. In this study, we investigate how these two factors affect the k -nn search with varying k values and different datasets. We found that with larger number of trees, the dispersion of points has a very limited effect on the k -nn search. One should use the original rpTree algorithm by picking a random direction regardless of the dispersion of points.</description><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -nearest neighbor search</subject><subject>Algorithms</subject><subject>Data structures</subject><subject>Dispersion</subject><subject>Forestry</subject><subject>Libraries</subject><subject>Licenses</subject><subject>Machine learning</subject><subject>Partitioning</subject><subject>Partitioning algorithms</subject><subject>Principal component analysis</subject><subject>Random Projection Forests</subject><subject>Random Projection Trees</subject><subject>Searching</subject><subject>Trees</subject><subject>unsupervised learning</subject><subject>Vector quantization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFrwyAUhWVssNL1F_RF2HM6vZpEH0vptkKhD-27GKNrsjZmmj7s388uZUwEL5fvnOvlIDSnZEEpkS_L1Wq93y-AACwYlTkX4g5NgBYyYzkr7v_Vj2gWY0vSEamVlxO0Oxwtts5ZM2DvcO-bboi4bmJvQ2x8h9MdEvKZdR2OVgdzxE2Hg-5qf8Z98G1SXjnng41DfEIPTp-ind3eKTq8rg-r92y7e9usltvMsFwMGQdTE26M1lWpnSk4rTU3EgBoabUxFkhdcZrgUpKc0wqMcACk4EBNLtkUbUbb2utW9aE56_CtvG7Ub8OHD6XD0JiTVbZIFnVZOMMKXulaCOuY0DJNgUprSF7Po1fa5uuSllCtv4Qu_V5BSQinQEmeKDZSJvgYg3V_UylR1xzUmIO65qBuOSTVfFQ11to_hRS8kGXJfgCviIQC</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Alshammari, Mashaan</creator><creator>Stavrakakis, John</creator><creator>Ahmed, Adel F.</creator><creator>Takatsuka, Masahiro</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7864-0011</orcidid><orcidid>https://orcid.org/0000-0002-0397-4260</orcidid></search><sort><creationdate>2022</creationdate><title>The effect of points dispersion on the k-nn search in random projection forests</title><author>Alshammari, Mashaan ; Stavrakakis, John ; Ahmed, Adel F. ; Takatsuka, Masahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-42cd04ccaab7afc641da4c922217eacce20db41c35790541b2c8f2206421c593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -nearest neighbor search</topic><topic>Algorithms</topic><topic>Data structures</topic><topic>Dispersion</topic><topic>Forestry</topic><topic>Libraries</topic><topic>Licenses</topic><topic>Machine learning</topic><topic>Partitioning</topic><topic>Partitioning algorithms</topic><topic>Principal component analysis</topic><topic>Random Projection Forests</topic><topic>Random Projection Trees</topic><topic>Searching</topic><topic>Trees</topic><topic>unsupervised learning</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alshammari, Mashaan</creatorcontrib><creatorcontrib>Stavrakakis, John</creatorcontrib><creatorcontrib>Ahmed, Adel F.</creatorcontrib><creatorcontrib>Takatsuka, Masahiro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alshammari, Mashaan</au><au>Stavrakakis, John</au><au>Ahmed, Adel F.</au><au>Takatsuka, Masahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of points dispersion on the k-nn search in random projection forests</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Partitioning trees are efficient data structures for k -nearest neighbor search. Machine learning libraries commonly use a special type of partitioning trees called k d-trees to perform k -nn search. Unfortunately, k d-trees can be ineffective in high dimensions because they need more tree levels to decrease the vector quantization (VQ) error. Random projection trees rpTrees solve this scalability problem by using random directions to split the data. A collection of rpTrees is called rpForest. k -nn search in an rpForest is influenced by two factors: 1) the dispersion of points along the random direction and 2) the number of rpTrees in the rpForest. In this study, we investigate how these two factors affect the k -nn search with varying k values and different datasets. We found that with larger number of trees, the dispersion of points has a very limited effect on the k -nn search. One should use the original rpTree algorithm by picking a random direction regardless of the dispersion of points.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3195488</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7864-0011</orcidid><orcidid>https://orcid.org/0000-0002-0397-4260</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2700412105 |
source | IEEE Xplore Open Access Journals |
subjects | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -nearest neighbor search Algorithms Data structures Dispersion Forestry Libraries Licenses Machine learning Partitioning Partitioning algorithms Principal component analysis Random Projection Forests Random Projection Trees Searching Trees unsupervised learning Vector quantization |
title | The effect of points dispersion on the k-nn search in random projection forests |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A05%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20points%20dispersion%20on%20the%20k-nn%20search%20in%20random%20projection%20forests&rft.jtitle=IEEE%20access&rft.au=Alshammari,%20Mashaan&rft.date=2022&rft.volume=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3195488&rft_dat=%3Cproquest_ieee_%3E2700412105%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-42cd04ccaab7afc641da4c922217eacce20db41c35790541b2c8f2206421c593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2700412105&rft_id=info:pmid/&rft_ieee_id=9846977&rfr_iscdi=true |