Loading…

A circuit mechanism for independent modulation of excitatory and inhibitory firing rates after sensory deprivation

Diverse interneuron subtypes shape sensory processing in mature cortical circuits. During development, sensory deprivation evokes powerful synaptic plasticity that alters circuitry, but how different inhibitory subtypes modulate circuit dynamics in response to this plasticity remains unclear. We inv...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2022-08, Vol.119 (32)
Main Authors: Richter, Leonidas M A, Gjorgjieva, Julijana
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 32
container_start_page
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 119
creator Richter, Leonidas M A
Gjorgjieva, Julijana
description Diverse interneuron subtypes shape sensory processing in mature cortical circuits. During development, sensory deprivation evokes powerful synaptic plasticity that alters circuitry, but how different inhibitory subtypes modulate circuit dynamics in response to this plasticity remains unclear. We investigate how deprivation-induced synaptic changes affect excitatory and inhibitory firing rates in a microcircuit model of the sensory cortex with multiple interneuron subtypes. We find that with a single interneuron subtype (parvalbumin-expressing [PV]), excitatory and inhibitory firing rates can only be comodulated-increased or decreased together. To explain the experimentally observed independent modulation, whereby one firing rate increases and the other decreases, requires strong feedback from a second interneuron subtype (somatostatin-expressing [SST]). Our model applies to the visual and somatosensory cortex, suggesting a general mechanism across sensory cortices. Therefore, we provide a mechanistic explanation for the differential role of interneuron subtypes in regulating firing rates, contributing to the already diverse roles they serve in the cortex.
doi_str_mv 10.1073/pnas.211689511
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2700793309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700793309</sourcerecordid><originalsourceid>FETCH-proquest_journals_27007933093</originalsourceid><addsrcrecordid>eNqNjM1OwzAQhC1EJcLPlfNKnFPWSdrER4SoeIDeK5PY7VbtOl07Fbw9puoDcJnR6Ps0Sj1rnGts69eRbZxXWi87s9D6RhUajS6XjcFbVSBWbdk1VXOn7mPcI6JZdFgoeYOepJ8owdH1O8sUj-CDAPHgRpeDMwnDdLCJAkPw4L57SjYF-QHLQxZ39EWX6UmItyA2uQjWJycQHcc_lM-EzpePRzXz9hDd07Uf1MvqY_3-WY4STpOLabMPk3BGm6pFbE1do6n_Z_0CvGxTjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700793309</pqid></control><display><type>article</type><title>A circuit mechanism for independent modulation of excitatory and inhibitory firing rates after sensory deprivation</title><source>PubMed (Medline)</source><creator>Richter, Leonidas M A ; Gjorgjieva, Julijana</creator><creatorcontrib>Richter, Leonidas M A ; Gjorgjieva, Julijana</creatorcontrib><description>Diverse interneuron subtypes shape sensory processing in mature cortical circuits. During development, sensory deprivation evokes powerful synaptic plasticity that alters circuitry, but how different inhibitory subtypes modulate circuit dynamics in response to this plasticity remains unclear. We investigate how deprivation-induced synaptic changes affect excitatory and inhibitory firing rates in a microcircuit model of the sensory cortex with multiple interneuron subtypes. We find that with a single interneuron subtype (parvalbumin-expressing [PV]), excitatory and inhibitory firing rates can only be comodulated-increased or decreased together. To explain the experimentally observed independent modulation, whereby one firing rate increases and the other decreases, requires strong feedback from a second interneuron subtype (somatostatin-expressing [SST]). Our model applies to the visual and somatosensory cortex, suggesting a general mechanism across sensory cortices. Therefore, we provide a mechanistic explanation for the differential role of interneuron subtypes in regulating firing rates, contributing to the already diverse roles they serve in the cortex.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.211689511</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Circuits ; Cortex (somatosensory) ; Firing rate ; Information processing ; Modulation ; Parvalbumin ; Plasticity ; Sensory deprivation ; Sensory integration ; Somatostatin ; Synaptic plasticity ; Visual pathways</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-08, Vol.119 (32)</ispartof><rights>Copyright National Academy of Sciences Aug 9, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Richter, Leonidas M A</creatorcontrib><creatorcontrib>Gjorgjieva, Julijana</creatorcontrib><title>A circuit mechanism for independent modulation of excitatory and inhibitory firing rates after sensory deprivation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Diverse interneuron subtypes shape sensory processing in mature cortical circuits. During development, sensory deprivation evokes powerful synaptic plasticity that alters circuitry, but how different inhibitory subtypes modulate circuit dynamics in response to this plasticity remains unclear. We investigate how deprivation-induced synaptic changes affect excitatory and inhibitory firing rates in a microcircuit model of the sensory cortex with multiple interneuron subtypes. We find that with a single interneuron subtype (parvalbumin-expressing [PV]), excitatory and inhibitory firing rates can only be comodulated-increased or decreased together. To explain the experimentally observed independent modulation, whereby one firing rate increases and the other decreases, requires strong feedback from a second interneuron subtype (somatostatin-expressing [SST]). Our model applies to the visual and somatosensory cortex, suggesting a general mechanism across sensory cortices. Therefore, we provide a mechanistic explanation for the differential role of interneuron subtypes in regulating firing rates, contributing to the already diverse roles they serve in the cortex.</description><subject>Circuits</subject><subject>Cortex (somatosensory)</subject><subject>Firing rate</subject><subject>Information processing</subject><subject>Modulation</subject><subject>Parvalbumin</subject><subject>Plasticity</subject><subject>Sensory deprivation</subject><subject>Sensory integration</subject><subject>Somatostatin</subject><subject>Synaptic plasticity</subject><subject>Visual pathways</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNjM1OwzAQhC1EJcLPlfNKnFPWSdrER4SoeIDeK5PY7VbtOl07Fbw9puoDcJnR6Ps0Sj1rnGts69eRbZxXWi87s9D6RhUajS6XjcFbVSBWbdk1VXOn7mPcI6JZdFgoeYOepJ8owdH1O8sUj-CDAPHgRpeDMwnDdLCJAkPw4L57SjYF-QHLQxZ39EWX6UmItyA2uQjWJycQHcc_lM-EzpePRzXz9hDd07Uf1MvqY_3-WY4STpOLabMPk3BGm6pFbE1do6n_Z_0CvGxTjg</recordid><startdate>20220809</startdate><enddate>20220809</enddate><creator>Richter, Leonidas M A</creator><creator>Gjorgjieva, Julijana</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20220809</creationdate><title>A circuit mechanism for independent modulation of excitatory and inhibitory firing rates after sensory deprivation</title><author>Richter, Leonidas M A ; Gjorgjieva, Julijana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27007933093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circuits</topic><topic>Cortex (somatosensory)</topic><topic>Firing rate</topic><topic>Information processing</topic><topic>Modulation</topic><topic>Parvalbumin</topic><topic>Plasticity</topic><topic>Sensory deprivation</topic><topic>Sensory integration</topic><topic>Somatostatin</topic><topic>Synaptic plasticity</topic><topic>Visual pathways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richter, Leonidas M A</creatorcontrib><creatorcontrib>Gjorgjieva, Julijana</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richter, Leonidas M A</au><au>Gjorgjieva, Julijana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A circuit mechanism for independent modulation of excitatory and inhibitory firing rates after sensory deprivation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2022-08-09</date><risdate>2022</risdate><volume>119</volume><issue>32</issue><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Diverse interneuron subtypes shape sensory processing in mature cortical circuits. During development, sensory deprivation evokes powerful synaptic plasticity that alters circuitry, but how different inhibitory subtypes modulate circuit dynamics in response to this plasticity remains unclear. We investigate how deprivation-induced synaptic changes affect excitatory and inhibitory firing rates in a microcircuit model of the sensory cortex with multiple interneuron subtypes. We find that with a single interneuron subtype (parvalbumin-expressing [PV]), excitatory and inhibitory firing rates can only be comodulated-increased or decreased together. To explain the experimentally observed independent modulation, whereby one firing rate increases and the other decreases, requires strong feedback from a second interneuron subtype (somatostatin-expressing [SST]). Our model applies to the visual and somatosensory cortex, suggesting a general mechanism across sensory cortices. Therefore, we provide a mechanistic explanation for the differential role of interneuron subtypes in regulating firing rates, contributing to the already diverse roles they serve in the cortex.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><doi>10.1073/pnas.211689511</doi></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2022-08, Vol.119 (32)
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_2700793309
source PubMed (Medline)
subjects Circuits
Cortex (somatosensory)
Firing rate
Information processing
Modulation
Parvalbumin
Plasticity
Sensory deprivation
Sensory integration
Somatostatin
Synaptic plasticity
Visual pathways
title A circuit mechanism for independent modulation of excitatory and inhibitory firing rates after sensory deprivation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A05%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20circuit%20mechanism%20for%20independent%20modulation%20of%20excitatory%20and%20inhibitory%20firing%20rates%20after%20sensory%20deprivation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Richter,%20Leonidas%20M%20A&rft.date=2022-08-09&rft.volume=119&rft.issue=32&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.211689511&rft_dat=%3Cproquest%3E2700793309%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27007933093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2700793309&rft_id=info:pmid/&rfr_iscdi=true