Loading…
Flood risk map from hydrological and mobility data: A case study in São Paulo (Brazil)
Cities increasingly face flood risk primarily due to extensive changes of the natural land cover to built‐up areas with impervious surfaces. In urban areas, flood impacts come mainly from road interruption. This article proposes an urban flood risk map from hydrological and mobility data, considerin...
Saved in:
Published in: | Transactions in GIS 2022-08, Vol.26 (5), p.2341-2365 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3012-b89b9d15127cf15cfec960590e61945b09e1b76dfc5d6f10181f35bd07f5f23f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3012-b89b9d15127cf15cfec960590e61945b09e1b76dfc5d6f10181f35bd07f5f23f3 |
container_end_page | 2365 |
container_issue | 5 |
container_start_page | 2341 |
container_title | Transactions in GIS |
container_volume | 26 |
creator | Tomás, Lívia Rodrigues Soares, Giovanni Guarnieri Jorge, Aurelienne A. S. Mendes, Jeferson Feitosa Freitas, Vander L. S. Santos, Leonardo B. L. |
description | Cities increasingly face flood risk primarily due to extensive changes of the natural land cover to built‐up areas with impervious surfaces. In urban areas, flood impacts come mainly from road interruption. This article proposes an urban flood risk map from hydrological and mobility data, considering the megacity of São Paulo, Brazil, as a case study. We estimate the flood susceptibility through the Height Above the Nearest Drainage algorithm; and the potential impact through the exposure and vulnerability components. We aggregate all variables into a regular grid and then classify the cells of each component into three classes: Moderate, High, and Very High. All components, except the flood susceptibility, have few cells in the Very High class. The flood susceptibility component reflects the presence of watercourses, and it has a strong influence on the location of those cells classified as Very High. |
doi_str_mv | 10.1111/tgis.12962 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2700911461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700911461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3012-b89b9d15127cf15cfec960590e61945b09e1b76dfc5d6f10181f35bd07f5f23f3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsbnyDgRoWpOXPJNO5qsbVQUGjF5ZDJpaamTU1mkPF1fBRfzKnj2rM5Z_Gd_4cPoXMgA2jnplqZMICY0fgA9SClecRoDoftnVCIgA7jY3QSwpoQkqYs76GXiXVOYm_CG97wHdbebfBrI72zbmUEt5hvJd640lhTNVjyit_iERY8KByqWjbYbPHi-8vhJ15bhy_vPP809uoUHWlugzr72330PLlfjh-i-eN0Nh7NI5EQiKNyyEomIYM4FxoyoZVglGSMKAoszUrCFJQ5lVpkkmogMASdZKUkuc50nOikjy663J1377UKVbF2td-2lUWcE8KglQAtdd1RwrsQvNLFzpsN900BpNiLK_biil9xLQwd_GGsav4hi-V0tuh-fgDtX2_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700911461</pqid></control><display><type>article</type><title>Flood risk map from hydrological and mobility data: A case study in São Paulo (Brazil)</title><source>EBSCOhost Business Source Ultimate</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Tomás, Lívia Rodrigues ; Soares, Giovanni Guarnieri ; Jorge, Aurelienne A. S. ; Mendes, Jeferson Feitosa ; Freitas, Vander L. S. ; Santos, Leonardo B. L.</creator><creatorcontrib>Tomás, Lívia Rodrigues ; Soares, Giovanni Guarnieri ; Jorge, Aurelienne A. S. ; Mendes, Jeferson Feitosa ; Freitas, Vander L. S. ; Santos, Leonardo B. L.</creatorcontrib><description>Cities increasingly face flood risk primarily due to extensive changes of the natural land cover to built‐up areas with impervious surfaces. In urban areas, flood impacts come mainly from road interruption. This article proposes an urban flood risk map from hydrological and mobility data, considering the megacity of São Paulo, Brazil, as a case study. We estimate the flood susceptibility through the Height Above the Nearest Drainage algorithm; and the potential impact through the exposure and vulnerability components. We aggregate all variables into a regular grid and then classify the cells of each component into three classes: Moderate, High, and Very High. All components, except the flood susceptibility, have few cells in the Very High class. The flood susceptibility component reflects the presence of watercourses, and it has a strong influence on the location of those cells classified as Very High.</description><identifier>ISSN: 1361-1682</identifier><identifier>EISSN: 1467-9671</identifier><identifier>DOI: 10.1111/tgis.12962</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Case studies ; Cells ; Components ; Environmental risk ; Flood mapping ; Floods ; Hydrology ; Land cover ; Megacities ; Mobility ; Risk ; Urban areas ; Vulnerability ; Watercourses</subject><ispartof>Transactions in GIS, 2022-08, Vol.26 (5), p.2341-2365</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3012-b89b9d15127cf15cfec960590e61945b09e1b76dfc5d6f10181f35bd07f5f23f3</citedby><cites>FETCH-LOGICAL-c3012-b89b9d15127cf15cfec960590e61945b09e1b76dfc5d6f10181f35bd07f5f23f3</cites><orcidid>0000-0002-3129-772X ; 0000-0003-3500-0994 ; 0000-0002-2464-1879 ; 0000-0001-7989-0816 ; 0000-0002-0943-4820 ; 0000-0002-5753-0462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Tomás, Lívia Rodrigues</creatorcontrib><creatorcontrib>Soares, Giovanni Guarnieri</creatorcontrib><creatorcontrib>Jorge, Aurelienne A. S.</creatorcontrib><creatorcontrib>Mendes, Jeferson Feitosa</creatorcontrib><creatorcontrib>Freitas, Vander L. S.</creatorcontrib><creatorcontrib>Santos, Leonardo B. L.</creatorcontrib><title>Flood risk map from hydrological and mobility data: A case study in São Paulo (Brazil)</title><title>Transactions in GIS</title><description>Cities increasingly face flood risk primarily due to extensive changes of the natural land cover to built‐up areas with impervious surfaces. In urban areas, flood impacts come mainly from road interruption. This article proposes an urban flood risk map from hydrological and mobility data, considering the megacity of São Paulo, Brazil, as a case study. We estimate the flood susceptibility through the Height Above the Nearest Drainage algorithm; and the potential impact through the exposure and vulnerability components. We aggregate all variables into a regular grid and then classify the cells of each component into three classes: Moderate, High, and Very High. All components, except the flood susceptibility, have few cells in the Very High class. The flood susceptibility component reflects the presence of watercourses, and it has a strong influence on the location of those cells classified as Very High.</description><subject>Algorithms</subject><subject>Case studies</subject><subject>Cells</subject><subject>Components</subject><subject>Environmental risk</subject><subject>Flood mapping</subject><subject>Floods</subject><subject>Hydrology</subject><subject>Land cover</subject><subject>Megacities</subject><subject>Mobility</subject><subject>Risk</subject><subject>Urban areas</subject><subject>Vulnerability</subject><subject>Watercourses</subject><issn>1361-1682</issn><issn>1467-9671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsbnyDgRoWpOXPJNO5qsbVQUGjF5ZDJpaamTU1mkPF1fBRfzKnj2rM5Z_Gd_4cPoXMgA2jnplqZMICY0fgA9SClecRoDoftnVCIgA7jY3QSwpoQkqYs76GXiXVOYm_CG97wHdbebfBrI72zbmUEt5hvJd640lhTNVjyit_iERY8KByqWjbYbPHi-8vhJ15bhy_vPP809uoUHWlugzr72330PLlfjh-i-eN0Nh7NI5EQiKNyyEomIYM4FxoyoZVglGSMKAoszUrCFJQ5lVpkkmogMASdZKUkuc50nOikjy663J1377UKVbF2td-2lUWcE8KglQAtdd1RwrsQvNLFzpsN900BpNiLK_biil9xLQwd_GGsav4hi-V0tuh-fgDtX2_A</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Tomás, Lívia Rodrigues</creator><creator>Soares, Giovanni Guarnieri</creator><creator>Jorge, Aurelienne A. S.</creator><creator>Mendes, Jeferson Feitosa</creator><creator>Freitas, Vander L. S.</creator><creator>Santos, Leonardo B. L.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3129-772X</orcidid><orcidid>https://orcid.org/0000-0003-3500-0994</orcidid><orcidid>https://orcid.org/0000-0002-2464-1879</orcidid><orcidid>https://orcid.org/0000-0001-7989-0816</orcidid><orcidid>https://orcid.org/0000-0002-0943-4820</orcidid><orcidid>https://orcid.org/0000-0002-5753-0462</orcidid></search><sort><creationdate>202208</creationdate><title>Flood risk map from hydrological and mobility data: A case study in São Paulo (Brazil)</title><author>Tomás, Lívia Rodrigues ; Soares, Giovanni Guarnieri ; Jorge, Aurelienne A. S. ; Mendes, Jeferson Feitosa ; Freitas, Vander L. S. ; Santos, Leonardo B. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3012-b89b9d15127cf15cfec960590e61945b09e1b76dfc5d6f10181f35bd07f5f23f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Case studies</topic><topic>Cells</topic><topic>Components</topic><topic>Environmental risk</topic><topic>Flood mapping</topic><topic>Floods</topic><topic>Hydrology</topic><topic>Land cover</topic><topic>Megacities</topic><topic>Mobility</topic><topic>Risk</topic><topic>Urban areas</topic><topic>Vulnerability</topic><topic>Watercourses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tomás, Lívia Rodrigues</creatorcontrib><creatorcontrib>Soares, Giovanni Guarnieri</creatorcontrib><creatorcontrib>Jorge, Aurelienne A. S.</creatorcontrib><creatorcontrib>Mendes, Jeferson Feitosa</creatorcontrib><creatorcontrib>Freitas, Vander L. S.</creatorcontrib><creatorcontrib>Santos, Leonardo B. L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Transactions in GIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tomás, Lívia Rodrigues</au><au>Soares, Giovanni Guarnieri</au><au>Jorge, Aurelienne A. S.</au><au>Mendes, Jeferson Feitosa</au><au>Freitas, Vander L. S.</au><au>Santos, Leonardo B. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flood risk map from hydrological and mobility data: A case study in São Paulo (Brazil)</atitle><jtitle>Transactions in GIS</jtitle><date>2022-08</date><risdate>2022</risdate><volume>26</volume><issue>5</issue><spage>2341</spage><epage>2365</epage><pages>2341-2365</pages><issn>1361-1682</issn><eissn>1467-9671</eissn><abstract>Cities increasingly face flood risk primarily due to extensive changes of the natural land cover to built‐up areas with impervious surfaces. In urban areas, flood impacts come mainly from road interruption. This article proposes an urban flood risk map from hydrological and mobility data, considering the megacity of São Paulo, Brazil, as a case study. We estimate the flood susceptibility through the Height Above the Nearest Drainage algorithm; and the potential impact through the exposure and vulnerability components. We aggregate all variables into a regular grid and then classify the cells of each component into three classes: Moderate, High, and Very High. All components, except the flood susceptibility, have few cells in the Very High class. The flood susceptibility component reflects the presence of watercourses, and it has a strong influence on the location of those cells classified as Very High.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/tgis.12962</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-3129-772X</orcidid><orcidid>https://orcid.org/0000-0003-3500-0994</orcidid><orcidid>https://orcid.org/0000-0002-2464-1879</orcidid><orcidid>https://orcid.org/0000-0001-7989-0816</orcidid><orcidid>https://orcid.org/0000-0002-0943-4820</orcidid><orcidid>https://orcid.org/0000-0002-5753-0462</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-1682 |
ispartof | Transactions in GIS, 2022-08, Vol.26 (5), p.2341-2365 |
issn | 1361-1682 1467-9671 |
language | eng |
recordid | cdi_proquest_journals_2700911461 |
source | EBSCOhost Business Source Ultimate; Wiley-Blackwell Read & Publish Collection |
subjects | Algorithms Case studies Cells Components Environmental risk Flood mapping Floods Hydrology Land cover Megacities Mobility Risk Urban areas Vulnerability Watercourses |
title | Flood risk map from hydrological and mobility data: A case study in São Paulo (Brazil) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flood%20risk%20map%20from%20hydrological%20and%20mobility%20data:%20A%20case%20study%20in%20S%C3%A3o%20Paulo%20(Brazil)&rft.jtitle=Transactions%20in%20GIS&rft.au=Tom%C3%A1s,%20L%C3%ADvia%20Rodrigues&rft.date=2022-08&rft.volume=26&rft.issue=5&rft.spage=2341&rft.epage=2365&rft.pages=2341-2365&rft.issn=1361-1682&rft.eissn=1467-9671&rft_id=info:doi/10.1111/tgis.12962&rft_dat=%3Cproquest_cross%3E2700911461%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3012-b89b9d15127cf15cfec960590e61945b09e1b76dfc5d6f10181f35bd07f5f23f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2700911461&rft_id=info:pmid/&rfr_iscdi=true |