Loading…

Flood risk map from hydrological and mobility data: A case study in São Paulo (Brazil)

Cities increasingly face flood risk primarily due to extensive changes of the natural land cover to built‐up areas with impervious surfaces. In urban areas, flood impacts come mainly from road interruption. This article proposes an urban flood risk map from hydrological and mobility data, considerin...

Full description

Saved in:
Bibliographic Details
Published in:Transactions in GIS 2022-08, Vol.26 (5), p.2341-2365
Main Authors: Tomás, Lívia Rodrigues, Soares, Giovanni Guarnieri, Jorge, Aurelienne A. S., Mendes, Jeferson Feitosa, Freitas, Vander L. S., Santos, Leonardo B. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3012-b89b9d15127cf15cfec960590e61945b09e1b76dfc5d6f10181f35bd07f5f23f3
cites cdi_FETCH-LOGICAL-c3012-b89b9d15127cf15cfec960590e61945b09e1b76dfc5d6f10181f35bd07f5f23f3
container_end_page 2365
container_issue 5
container_start_page 2341
container_title Transactions in GIS
container_volume 26
creator Tomás, Lívia Rodrigues
Soares, Giovanni Guarnieri
Jorge, Aurelienne A. S.
Mendes, Jeferson Feitosa
Freitas, Vander L. S.
Santos, Leonardo B. L.
description Cities increasingly face flood risk primarily due to extensive changes of the natural land cover to built‐up areas with impervious surfaces. In urban areas, flood impacts come mainly from road interruption. This article proposes an urban flood risk map from hydrological and mobility data, considering the megacity of São Paulo, Brazil, as a case study. We estimate the flood susceptibility through the Height Above the Nearest Drainage algorithm; and the potential impact through the exposure and vulnerability components. We aggregate all variables into a regular grid and then classify the cells of each component into three classes: Moderate, High, and Very High. All components, except the flood susceptibility, have few cells in the Very High class. The flood susceptibility component reflects the presence of watercourses, and it has a strong influence on the location of those cells classified as Very High.
doi_str_mv 10.1111/tgis.12962
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2700911461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700911461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3012-b89b9d15127cf15cfec960590e61945b09e1b76dfc5d6f10181f35bd07f5f23f3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsbnyDgRoWpOXPJNO5qsbVQUGjF5ZDJpaamTU1mkPF1fBRfzKnj2rM5Z_Gd_4cPoXMgA2jnplqZMICY0fgA9SClecRoDoftnVCIgA7jY3QSwpoQkqYs76GXiXVOYm_CG97wHdbebfBrI72zbmUEt5hvJd640lhTNVjyit_iERY8KByqWjbYbPHi-8vhJ15bhy_vPP809uoUHWlugzr72330PLlfjh-i-eN0Nh7NI5EQiKNyyEomIYM4FxoyoZVglGSMKAoszUrCFJQ5lVpkkmogMASdZKUkuc50nOikjy663J1377UKVbF2td-2lUWcE8KglQAtdd1RwrsQvNLFzpsN900BpNiLK_biil9xLQwd_GGsav4hi-V0tuh-fgDtX2_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700911461</pqid></control><display><type>article</type><title>Flood risk map from hydrological and mobility data: A case study in São Paulo (Brazil)</title><source>EBSCOhost Business Source Ultimate</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Tomás, Lívia Rodrigues ; Soares, Giovanni Guarnieri ; Jorge, Aurelienne A. S. ; Mendes, Jeferson Feitosa ; Freitas, Vander L. S. ; Santos, Leonardo B. L.</creator><creatorcontrib>Tomás, Lívia Rodrigues ; Soares, Giovanni Guarnieri ; Jorge, Aurelienne A. S. ; Mendes, Jeferson Feitosa ; Freitas, Vander L. S. ; Santos, Leonardo B. L.</creatorcontrib><description>Cities increasingly face flood risk primarily due to extensive changes of the natural land cover to built‐up areas with impervious surfaces. In urban areas, flood impacts come mainly from road interruption. This article proposes an urban flood risk map from hydrological and mobility data, considering the megacity of São Paulo, Brazil, as a case study. We estimate the flood susceptibility through the Height Above the Nearest Drainage algorithm; and the potential impact through the exposure and vulnerability components. We aggregate all variables into a regular grid and then classify the cells of each component into three classes: Moderate, High, and Very High. All components, except the flood susceptibility, have few cells in the Very High class. The flood susceptibility component reflects the presence of watercourses, and it has a strong influence on the location of those cells classified as Very High.</description><identifier>ISSN: 1361-1682</identifier><identifier>EISSN: 1467-9671</identifier><identifier>DOI: 10.1111/tgis.12962</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Case studies ; Cells ; Components ; Environmental risk ; Flood mapping ; Floods ; Hydrology ; Land cover ; Megacities ; Mobility ; Risk ; Urban areas ; Vulnerability ; Watercourses</subject><ispartof>Transactions in GIS, 2022-08, Vol.26 (5), p.2341-2365</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3012-b89b9d15127cf15cfec960590e61945b09e1b76dfc5d6f10181f35bd07f5f23f3</citedby><cites>FETCH-LOGICAL-c3012-b89b9d15127cf15cfec960590e61945b09e1b76dfc5d6f10181f35bd07f5f23f3</cites><orcidid>0000-0002-3129-772X ; 0000-0003-3500-0994 ; 0000-0002-2464-1879 ; 0000-0001-7989-0816 ; 0000-0002-0943-4820 ; 0000-0002-5753-0462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Tomás, Lívia Rodrigues</creatorcontrib><creatorcontrib>Soares, Giovanni Guarnieri</creatorcontrib><creatorcontrib>Jorge, Aurelienne A. S.</creatorcontrib><creatorcontrib>Mendes, Jeferson Feitosa</creatorcontrib><creatorcontrib>Freitas, Vander L. S.</creatorcontrib><creatorcontrib>Santos, Leonardo B. L.</creatorcontrib><title>Flood risk map from hydrological and mobility data: A case study in São Paulo (Brazil)</title><title>Transactions in GIS</title><description>Cities increasingly face flood risk primarily due to extensive changes of the natural land cover to built‐up areas with impervious surfaces. In urban areas, flood impacts come mainly from road interruption. This article proposes an urban flood risk map from hydrological and mobility data, considering the megacity of São Paulo, Brazil, as a case study. We estimate the flood susceptibility through the Height Above the Nearest Drainage algorithm; and the potential impact through the exposure and vulnerability components. We aggregate all variables into a regular grid and then classify the cells of each component into three classes: Moderate, High, and Very High. All components, except the flood susceptibility, have few cells in the Very High class. The flood susceptibility component reflects the presence of watercourses, and it has a strong influence on the location of those cells classified as Very High.</description><subject>Algorithms</subject><subject>Case studies</subject><subject>Cells</subject><subject>Components</subject><subject>Environmental risk</subject><subject>Flood mapping</subject><subject>Floods</subject><subject>Hydrology</subject><subject>Land cover</subject><subject>Megacities</subject><subject>Mobility</subject><subject>Risk</subject><subject>Urban areas</subject><subject>Vulnerability</subject><subject>Watercourses</subject><issn>1361-1682</issn><issn>1467-9671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsbnyDgRoWpOXPJNO5qsbVQUGjF5ZDJpaamTU1mkPF1fBRfzKnj2rM5Z_Gd_4cPoXMgA2jnplqZMICY0fgA9SClecRoDoftnVCIgA7jY3QSwpoQkqYs76GXiXVOYm_CG97wHdbebfBrI72zbmUEt5hvJd640lhTNVjyit_iERY8KByqWjbYbPHi-8vhJ15bhy_vPP809uoUHWlugzr72330PLlfjh-i-eN0Nh7NI5EQiKNyyEomIYM4FxoyoZVglGSMKAoszUrCFJQ5lVpkkmogMASdZKUkuc50nOikjy663J1377UKVbF2td-2lUWcE8KglQAtdd1RwrsQvNLFzpsN900BpNiLK_biil9xLQwd_GGsav4hi-V0tuh-fgDtX2_A</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Tomás, Lívia Rodrigues</creator><creator>Soares, Giovanni Guarnieri</creator><creator>Jorge, Aurelienne A. S.</creator><creator>Mendes, Jeferson Feitosa</creator><creator>Freitas, Vander L. S.</creator><creator>Santos, Leonardo B. L.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3129-772X</orcidid><orcidid>https://orcid.org/0000-0003-3500-0994</orcidid><orcidid>https://orcid.org/0000-0002-2464-1879</orcidid><orcidid>https://orcid.org/0000-0001-7989-0816</orcidid><orcidid>https://orcid.org/0000-0002-0943-4820</orcidid><orcidid>https://orcid.org/0000-0002-5753-0462</orcidid></search><sort><creationdate>202208</creationdate><title>Flood risk map from hydrological and mobility data: A case study in São Paulo (Brazil)</title><author>Tomás, Lívia Rodrigues ; Soares, Giovanni Guarnieri ; Jorge, Aurelienne A. S. ; Mendes, Jeferson Feitosa ; Freitas, Vander L. S. ; Santos, Leonardo B. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3012-b89b9d15127cf15cfec960590e61945b09e1b76dfc5d6f10181f35bd07f5f23f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Case studies</topic><topic>Cells</topic><topic>Components</topic><topic>Environmental risk</topic><topic>Flood mapping</topic><topic>Floods</topic><topic>Hydrology</topic><topic>Land cover</topic><topic>Megacities</topic><topic>Mobility</topic><topic>Risk</topic><topic>Urban areas</topic><topic>Vulnerability</topic><topic>Watercourses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tomás, Lívia Rodrigues</creatorcontrib><creatorcontrib>Soares, Giovanni Guarnieri</creatorcontrib><creatorcontrib>Jorge, Aurelienne A. S.</creatorcontrib><creatorcontrib>Mendes, Jeferson Feitosa</creatorcontrib><creatorcontrib>Freitas, Vander L. S.</creatorcontrib><creatorcontrib>Santos, Leonardo B. L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Transactions in GIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tomás, Lívia Rodrigues</au><au>Soares, Giovanni Guarnieri</au><au>Jorge, Aurelienne A. S.</au><au>Mendes, Jeferson Feitosa</au><au>Freitas, Vander L. S.</au><au>Santos, Leonardo B. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flood risk map from hydrological and mobility data: A case study in São Paulo (Brazil)</atitle><jtitle>Transactions in GIS</jtitle><date>2022-08</date><risdate>2022</risdate><volume>26</volume><issue>5</issue><spage>2341</spage><epage>2365</epage><pages>2341-2365</pages><issn>1361-1682</issn><eissn>1467-9671</eissn><abstract>Cities increasingly face flood risk primarily due to extensive changes of the natural land cover to built‐up areas with impervious surfaces. In urban areas, flood impacts come mainly from road interruption. This article proposes an urban flood risk map from hydrological and mobility data, considering the megacity of São Paulo, Brazil, as a case study. We estimate the flood susceptibility through the Height Above the Nearest Drainage algorithm; and the potential impact through the exposure and vulnerability components. We aggregate all variables into a regular grid and then classify the cells of each component into three classes: Moderate, High, and Very High. All components, except the flood susceptibility, have few cells in the Very High class. The flood susceptibility component reflects the presence of watercourses, and it has a strong influence on the location of those cells classified as Very High.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/tgis.12962</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-3129-772X</orcidid><orcidid>https://orcid.org/0000-0003-3500-0994</orcidid><orcidid>https://orcid.org/0000-0002-2464-1879</orcidid><orcidid>https://orcid.org/0000-0001-7989-0816</orcidid><orcidid>https://orcid.org/0000-0002-0943-4820</orcidid><orcidid>https://orcid.org/0000-0002-5753-0462</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1361-1682
ispartof Transactions in GIS, 2022-08, Vol.26 (5), p.2341-2365
issn 1361-1682
1467-9671
language eng
recordid cdi_proquest_journals_2700911461
source EBSCOhost Business Source Ultimate; Wiley-Blackwell Read & Publish Collection
subjects Algorithms
Case studies
Cells
Components
Environmental risk
Flood mapping
Floods
Hydrology
Land cover
Megacities
Mobility
Risk
Urban areas
Vulnerability
Watercourses
title Flood risk map from hydrological and mobility data: A case study in São Paulo (Brazil)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flood%20risk%20map%20from%20hydrological%20and%20mobility%20data:%20A%20case%20study%20in%20S%C3%A3o%20Paulo%20(Brazil)&rft.jtitle=Transactions%20in%20GIS&rft.au=Tom%C3%A1s,%20L%C3%ADvia%20Rodrigues&rft.date=2022-08&rft.volume=26&rft.issue=5&rft.spage=2341&rft.epage=2365&rft.pages=2341-2365&rft.issn=1361-1682&rft.eissn=1467-9671&rft_id=info:doi/10.1111/tgis.12962&rft_dat=%3Cproquest_cross%3E2700911461%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3012-b89b9d15127cf15cfec960590e61945b09e1b76dfc5d6f10181f35bd07f5f23f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2700911461&rft_id=info:pmid/&rfr_iscdi=true