Loading…
Cost effective non‐evacuated receiver for line‐concentrating solar collectors characterized by experimentally validated computational fluid dynamics model
Solar thermal technology promises to be a significant component of the future renewable energy mix. As the most mature solar thermal technology, parabolic trough concentrators (PTC) are the focus of considerable research. Conventional PTC use evacuated receivers, which contribute 30% of the solar fi...
Saved in:
Published in: | Canadian journal of chemical engineering 2022-09, Vol.100 (9), p.2259-2278 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3019-c56ea5f422cb629828caefdf14470799852d70f8fccb749a09aa3ce5c926e53b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3019-c56ea5f422cb629828caefdf14470799852d70f8fccb749a09aa3ce5c926e53b3 |
container_end_page | 2278 |
container_issue | 9 |
container_start_page | 2259 |
container_title | Canadian journal of chemical engineering |
container_volume | 100 |
creator | Panda, Mihir Kumar, Durgesh Gharat, Punit V. Patil, Ramchandra G. Dalvi, Vishwanath H. Mathpati, Channamallikarjun S. Gaval, Vivek R. Deshmukh, Suresh P. Panse, Sudhir V. Joshi, Jyeshtharaj B. |
description | Solar thermal technology promises to be a significant component of the future renewable energy mix. As the most mature solar thermal technology, parabolic trough concentrators (PTC) are the focus of considerable research. Conventional PTC use evacuated receivers, which contribute 30% of the solar field cost, not including significant failure (55% due to broken glass envelopes and 29% due to loss of vacuum arising due to failure of glass to metal seal). We report a non‐evacuated receiver with a modular design for easier assembly and superior thermal performance for a PTC made of reflective strips of mirrored glass with a rim angle of 60°. The receiver performance is estimated using our own ray‐tracing software and computational fluid dynamics (CFD) simulations using a model that we have validated with our own experimental rig. Critical parameters like the width of the mirror strip, the emissivity of solar selective coating, insulation material, and reflectivity of optical cavity walls have been analyzed in this study. A scaled‐up model of the proposed novel receiver with a heat transfer fluid conduit diameter of 70 mm has been simulated to compare the performance with the commercial SCHOTT PTR® 70. The cost of this receiver is estimated to be $30/m as compared to up to $250/m for SCHOTT PTR® 70 with comparable performance. The modular nature of the receiver and reflector gives operational and maintenance flexibility and facile part replacement in case of damage, resulting in low‐cost operation. |
doi_str_mv | 10.1002/cjce.24499 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2701082722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2701082722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3019-c56ea5f422cb629828caefdf14470799852d70f8fccb749a09aa3ce5c926e53b3</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhq2qSN0Clz6BJW5IAdtxNvERRbSAVuICUm_RZDJus_LGi51sCac-Qp-Ah-uTYHZ77mk0428-eX7GvkhxIYVQl7hGulBaG_OBLaTJTSak-f6RLYQQVaZFrj-xzzGuU6uElgv2Wvs4crKWcOx3xAc__P39h3aAE4zU8UBIaR649YG7fqD0in5AGsYAYz_84NE7CBy9c0nhQ-T4EwLgSKF_SYJ25vS8Tc0mrYBzM9-B67u9HP1mO41J4wdw3Lqp73g3D7DpMfKN78idsCMLLtLpv3rMHr9eP9Q32er-2219tcowTwdmWCwJCquVwnapTKUqBLKdlVqXojSmKlRXCltZxLbUBoQByJEKNGpJRd7mx-zs4N0G_zRRHJu1n0L6VWxUKaSoVKlUos4PFAYfYyDbbNNdEOZGiuY9_-Y9_2aff4LlAf7VO5r_Qzb1XX192HkDJm6PYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2701082722</pqid></control><display><type>article</type><title>Cost effective non‐evacuated receiver for line‐concentrating solar collectors characterized by experimentally validated computational fluid dynamics model</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Panda, Mihir ; Kumar, Durgesh ; Gharat, Punit V. ; Patil, Ramchandra G. ; Dalvi, Vishwanath H. ; Mathpati, Channamallikarjun S. ; Gaval, Vivek R. ; Deshmukh, Suresh P. ; Panse, Sudhir V. ; Joshi, Jyeshtharaj B.</creator><creatorcontrib>Panda, Mihir ; Kumar, Durgesh ; Gharat, Punit V. ; Patil, Ramchandra G. ; Dalvi, Vishwanath H. ; Mathpati, Channamallikarjun S. ; Gaval, Vivek R. ; Deshmukh, Suresh P. ; Panse, Sudhir V. ; Joshi, Jyeshtharaj B.</creatorcontrib><description>Solar thermal technology promises to be a significant component of the future renewable energy mix. As the most mature solar thermal technology, parabolic trough concentrators (PTC) are the focus of considerable research. Conventional PTC use evacuated receivers, which contribute 30% of the solar field cost, not including significant failure (55% due to broken glass envelopes and 29% due to loss of vacuum arising due to failure of glass to metal seal). We report a non‐evacuated receiver with a modular design for easier assembly and superior thermal performance for a PTC made of reflective strips of mirrored glass with a rim angle of 60°. The receiver performance is estimated using our own ray‐tracing software and computational fluid dynamics (CFD) simulations using a model that we have validated with our own experimental rig. Critical parameters like the width of the mirror strip, the emissivity of solar selective coating, insulation material, and reflectivity of optical cavity walls have been analyzed in this study. A scaled‐up model of the proposed novel receiver with a heat transfer fluid conduit diameter of 70 mm has been simulated to compare the performance with the commercial SCHOTT PTR® 70. The cost of this receiver is estimated to be $30/m as compared to up to $250/m for SCHOTT PTR® 70 with comparable performance. The modular nature of the receiver and reflector gives operational and maintenance flexibility and facile part replacement in case of damage, resulting in low‐cost operation.</description><identifier>ISSN: 0008-4034</identifier><identifier>EISSN: 1939-019X</identifier><identifier>DOI: 10.1002/cjce.24499</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Computational fluid dynamics ; Evacuation ; Fluid dynamics ; Mathematical models ; mirror strip reflector ; Modular design ; non‐evacuated receiver ; parabolic trough ; Solar collectors ; Solar heating ; solar thermal</subject><ispartof>Canadian journal of chemical engineering, 2022-09, Vol.100 (9), p.2259-2278</ispartof><rights>2022 Canadian Society for Chemical Engineering.</rights><rights>2022 Canadian Society for Chemical Engineering</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3019-c56ea5f422cb629828caefdf14470799852d70f8fccb749a09aa3ce5c926e53b3</citedby><cites>FETCH-LOGICAL-c3019-c56ea5f422cb629828caefdf14470799852d70f8fccb749a09aa3ce5c926e53b3</cites><orcidid>0000-0002-4858-213X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Panda, Mihir</creatorcontrib><creatorcontrib>Kumar, Durgesh</creatorcontrib><creatorcontrib>Gharat, Punit V.</creatorcontrib><creatorcontrib>Patil, Ramchandra G.</creatorcontrib><creatorcontrib>Dalvi, Vishwanath H.</creatorcontrib><creatorcontrib>Mathpati, Channamallikarjun S.</creatorcontrib><creatorcontrib>Gaval, Vivek R.</creatorcontrib><creatorcontrib>Deshmukh, Suresh P.</creatorcontrib><creatorcontrib>Panse, Sudhir V.</creatorcontrib><creatorcontrib>Joshi, Jyeshtharaj B.</creatorcontrib><title>Cost effective non‐evacuated receiver for line‐concentrating solar collectors characterized by experimentally validated computational fluid dynamics model</title><title>Canadian journal of chemical engineering</title><description>Solar thermal technology promises to be a significant component of the future renewable energy mix. As the most mature solar thermal technology, parabolic trough concentrators (PTC) are the focus of considerable research. Conventional PTC use evacuated receivers, which contribute 30% of the solar field cost, not including significant failure (55% due to broken glass envelopes and 29% due to loss of vacuum arising due to failure of glass to metal seal). We report a non‐evacuated receiver with a modular design for easier assembly and superior thermal performance for a PTC made of reflective strips of mirrored glass with a rim angle of 60°. The receiver performance is estimated using our own ray‐tracing software and computational fluid dynamics (CFD) simulations using a model that we have validated with our own experimental rig. Critical parameters like the width of the mirror strip, the emissivity of solar selective coating, insulation material, and reflectivity of optical cavity walls have been analyzed in this study. A scaled‐up model of the proposed novel receiver with a heat transfer fluid conduit diameter of 70 mm has been simulated to compare the performance with the commercial SCHOTT PTR® 70. The cost of this receiver is estimated to be $30/m as compared to up to $250/m for SCHOTT PTR® 70 with comparable performance. The modular nature of the receiver and reflector gives operational and maintenance flexibility and facile part replacement in case of damage, resulting in low‐cost operation.</description><subject>Computational fluid dynamics</subject><subject>Evacuation</subject><subject>Fluid dynamics</subject><subject>Mathematical models</subject><subject>mirror strip reflector</subject><subject>Modular design</subject><subject>non‐evacuated receiver</subject><subject>parabolic trough</subject><subject>Solar collectors</subject><subject>Solar heating</subject><subject>solar thermal</subject><issn>0008-4034</issn><issn>1939-019X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAQhq2qSN0Clz6BJW5IAdtxNvERRbSAVuICUm_RZDJus_LGi51sCac-Qp-Ah-uTYHZ77mk0428-eX7GvkhxIYVQl7hGulBaG_OBLaTJTSak-f6RLYQQVaZFrj-xzzGuU6uElgv2Wvs4crKWcOx3xAc__P39h3aAE4zU8UBIaR649YG7fqD0in5AGsYAYz_84NE7CBy9c0nhQ-T4EwLgSKF_SYJ25vS8Tc0mrYBzM9-B67u9HP1mO41J4wdw3Lqp73g3D7DpMfKN78idsCMLLtLpv3rMHr9eP9Q32er-2219tcowTwdmWCwJCquVwnapTKUqBLKdlVqXojSmKlRXCltZxLbUBoQByJEKNGpJRd7mx-zs4N0G_zRRHJu1n0L6VWxUKaSoVKlUos4PFAYfYyDbbNNdEOZGiuY9_-Y9_2aff4LlAf7VO5r_Qzb1XX192HkDJm6PYQ</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Panda, Mihir</creator><creator>Kumar, Durgesh</creator><creator>Gharat, Punit V.</creator><creator>Patil, Ramchandra G.</creator><creator>Dalvi, Vishwanath H.</creator><creator>Mathpati, Channamallikarjun S.</creator><creator>Gaval, Vivek R.</creator><creator>Deshmukh, Suresh P.</creator><creator>Panse, Sudhir V.</creator><creator>Joshi, Jyeshtharaj B.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4858-213X</orcidid></search><sort><creationdate>202209</creationdate><title>Cost effective non‐evacuated receiver for line‐concentrating solar collectors characterized by experimentally validated computational fluid dynamics model</title><author>Panda, Mihir ; Kumar, Durgesh ; Gharat, Punit V. ; Patil, Ramchandra G. ; Dalvi, Vishwanath H. ; Mathpati, Channamallikarjun S. ; Gaval, Vivek R. ; Deshmukh, Suresh P. ; Panse, Sudhir V. ; Joshi, Jyeshtharaj B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3019-c56ea5f422cb629828caefdf14470799852d70f8fccb749a09aa3ce5c926e53b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational fluid dynamics</topic><topic>Evacuation</topic><topic>Fluid dynamics</topic><topic>Mathematical models</topic><topic>mirror strip reflector</topic><topic>Modular design</topic><topic>non‐evacuated receiver</topic><topic>parabolic trough</topic><topic>Solar collectors</topic><topic>Solar heating</topic><topic>solar thermal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panda, Mihir</creatorcontrib><creatorcontrib>Kumar, Durgesh</creatorcontrib><creatorcontrib>Gharat, Punit V.</creatorcontrib><creatorcontrib>Patil, Ramchandra G.</creatorcontrib><creatorcontrib>Dalvi, Vishwanath H.</creatorcontrib><creatorcontrib>Mathpati, Channamallikarjun S.</creatorcontrib><creatorcontrib>Gaval, Vivek R.</creatorcontrib><creatorcontrib>Deshmukh, Suresh P.</creatorcontrib><creatorcontrib>Panse, Sudhir V.</creatorcontrib><creatorcontrib>Joshi, Jyeshtharaj B.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Canadian journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panda, Mihir</au><au>Kumar, Durgesh</au><au>Gharat, Punit V.</au><au>Patil, Ramchandra G.</au><au>Dalvi, Vishwanath H.</au><au>Mathpati, Channamallikarjun S.</au><au>Gaval, Vivek R.</au><au>Deshmukh, Suresh P.</au><au>Panse, Sudhir V.</au><au>Joshi, Jyeshtharaj B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cost effective non‐evacuated receiver for line‐concentrating solar collectors characterized by experimentally validated computational fluid dynamics model</atitle><jtitle>Canadian journal of chemical engineering</jtitle><date>2022-09</date><risdate>2022</risdate><volume>100</volume><issue>9</issue><spage>2259</spage><epage>2278</epage><pages>2259-2278</pages><issn>0008-4034</issn><eissn>1939-019X</eissn><abstract>Solar thermal technology promises to be a significant component of the future renewable energy mix. As the most mature solar thermal technology, parabolic trough concentrators (PTC) are the focus of considerable research. Conventional PTC use evacuated receivers, which contribute 30% of the solar field cost, not including significant failure (55% due to broken glass envelopes and 29% due to loss of vacuum arising due to failure of glass to metal seal). We report a non‐evacuated receiver with a modular design for easier assembly and superior thermal performance for a PTC made of reflective strips of mirrored glass with a rim angle of 60°. The receiver performance is estimated using our own ray‐tracing software and computational fluid dynamics (CFD) simulations using a model that we have validated with our own experimental rig. Critical parameters like the width of the mirror strip, the emissivity of solar selective coating, insulation material, and reflectivity of optical cavity walls have been analyzed in this study. A scaled‐up model of the proposed novel receiver with a heat transfer fluid conduit diameter of 70 mm has been simulated to compare the performance with the commercial SCHOTT PTR® 70. The cost of this receiver is estimated to be $30/m as compared to up to $250/m for SCHOTT PTR® 70 with comparable performance. The modular nature of the receiver and reflector gives operational and maintenance flexibility and facile part replacement in case of damage, resulting in low‐cost operation.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/cjce.24499</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4858-213X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-4034 |
ispartof | Canadian journal of chemical engineering, 2022-09, Vol.100 (9), p.2259-2278 |
issn | 0008-4034 1939-019X |
language | eng |
recordid | cdi_proquest_journals_2701082722 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Computational fluid dynamics Evacuation Fluid dynamics Mathematical models mirror strip reflector Modular design non‐evacuated receiver parabolic trough Solar collectors Solar heating solar thermal |
title | Cost effective non‐evacuated receiver for line‐concentrating solar collectors characterized by experimentally validated computational fluid dynamics model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cost%20effective%20non%E2%80%90evacuated%20receiver%20for%20line%E2%80%90concentrating%20solar%20collectors%20characterized%20by%20experimentally%20validated%20computational%20fluid%20dynamics%20model&rft.jtitle=Canadian%20journal%20of%20chemical%20engineering&rft.au=Panda,%20Mihir&rft.date=2022-09&rft.volume=100&rft.issue=9&rft.spage=2259&rft.epage=2278&rft.pages=2259-2278&rft.issn=0008-4034&rft.eissn=1939-019X&rft_id=info:doi/10.1002/cjce.24499&rft_dat=%3Cproquest_cross%3E2701082722%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3019-c56ea5f422cb629828caefdf14470799852d70f8fccb749a09aa3ce5c926e53b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2701082722&rft_id=info:pmid/&rfr_iscdi=true |