Loading…

Cost effective non‐evacuated receiver for line‐concentrating solar collectors characterized by experimentally validated computational fluid dynamics model

Solar thermal technology promises to be a significant component of the future renewable energy mix. As the most mature solar thermal technology, parabolic trough concentrators (PTC) are the focus of considerable research. Conventional PTC use evacuated receivers, which contribute 30% of the solar fi...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of chemical engineering 2022-09, Vol.100 (9), p.2259-2278
Main Authors: Panda, Mihir, Kumar, Durgesh, Gharat, Punit V., Patil, Ramchandra G., Dalvi, Vishwanath H., Mathpati, Channamallikarjun S., Gaval, Vivek R., Deshmukh, Suresh P., Panse, Sudhir V., Joshi, Jyeshtharaj B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3019-c56ea5f422cb629828caefdf14470799852d70f8fccb749a09aa3ce5c926e53b3
cites cdi_FETCH-LOGICAL-c3019-c56ea5f422cb629828caefdf14470799852d70f8fccb749a09aa3ce5c926e53b3
container_end_page 2278
container_issue 9
container_start_page 2259
container_title Canadian journal of chemical engineering
container_volume 100
creator Panda, Mihir
Kumar, Durgesh
Gharat, Punit V.
Patil, Ramchandra G.
Dalvi, Vishwanath H.
Mathpati, Channamallikarjun S.
Gaval, Vivek R.
Deshmukh, Suresh P.
Panse, Sudhir V.
Joshi, Jyeshtharaj B.
description Solar thermal technology promises to be a significant component of the future renewable energy mix. As the most mature solar thermal technology, parabolic trough concentrators (PTC) are the focus of considerable research. Conventional PTC use evacuated receivers, which contribute 30% of the solar field cost, not including significant failure (55% due to broken glass envelopes and 29% due to loss of vacuum arising due to failure of glass to metal seal). We report a non‐evacuated receiver with a modular design for easier assembly and superior thermal performance for a PTC made of reflective strips of mirrored glass with a rim angle of 60°. The receiver performance is estimated using our own ray‐tracing software and computational fluid dynamics (CFD) simulations using a model that we have validated with our own experimental rig. Critical parameters like the width of the mirror strip, the emissivity of solar selective coating, insulation material, and reflectivity of optical cavity walls have been analyzed in this study. A scaled‐up model of the proposed novel receiver with a heat transfer fluid conduit diameter of 70 mm has been simulated to compare the performance with the commercial SCHOTT PTR® 70. The cost of this receiver is estimated to be $30/m as compared to up to $250/m for SCHOTT PTR® 70 with comparable performance. The modular nature of the receiver and reflector gives operational and maintenance flexibility and facile part replacement in case of damage, resulting in low‐cost operation.
doi_str_mv 10.1002/cjce.24499
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2701082722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2701082722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3019-c56ea5f422cb629828caefdf14470799852d70f8fccb749a09aa3ce5c926e53b3</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhq2qSN0Clz6BJW5IAdtxNvERRbSAVuICUm_RZDJus_LGi51sCac-Qp-Ah-uTYHZ77mk0428-eX7GvkhxIYVQl7hGulBaG_OBLaTJTSak-f6RLYQQVaZFrj-xzzGuU6uElgv2Wvs4crKWcOx3xAc__P39h3aAE4zU8UBIaR649YG7fqD0in5AGsYAYz_84NE7CBy9c0nhQ-T4EwLgSKF_SYJ25vS8Tc0mrYBzM9-B67u9HP1mO41J4wdw3Lqp73g3D7DpMfKN78idsCMLLtLpv3rMHr9eP9Q32er-2219tcowTwdmWCwJCquVwnapTKUqBLKdlVqXojSmKlRXCltZxLbUBoQByJEKNGpJRd7mx-zs4N0G_zRRHJu1n0L6VWxUKaSoVKlUos4PFAYfYyDbbNNdEOZGiuY9_-Y9_2aff4LlAf7VO5r_Qzb1XX192HkDJm6PYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2701082722</pqid></control><display><type>article</type><title>Cost effective non‐evacuated receiver for line‐concentrating solar collectors characterized by experimentally validated computational fluid dynamics model</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Panda, Mihir ; Kumar, Durgesh ; Gharat, Punit V. ; Patil, Ramchandra G. ; Dalvi, Vishwanath H. ; Mathpati, Channamallikarjun S. ; Gaval, Vivek R. ; Deshmukh, Suresh P. ; Panse, Sudhir V. ; Joshi, Jyeshtharaj B.</creator><creatorcontrib>Panda, Mihir ; Kumar, Durgesh ; Gharat, Punit V. ; Patil, Ramchandra G. ; Dalvi, Vishwanath H. ; Mathpati, Channamallikarjun S. ; Gaval, Vivek R. ; Deshmukh, Suresh P. ; Panse, Sudhir V. ; Joshi, Jyeshtharaj B.</creatorcontrib><description>Solar thermal technology promises to be a significant component of the future renewable energy mix. As the most mature solar thermal technology, parabolic trough concentrators (PTC) are the focus of considerable research. Conventional PTC use evacuated receivers, which contribute 30% of the solar field cost, not including significant failure (55% due to broken glass envelopes and 29% due to loss of vacuum arising due to failure of glass to metal seal). We report a non‐evacuated receiver with a modular design for easier assembly and superior thermal performance for a PTC made of reflective strips of mirrored glass with a rim angle of 60°. The receiver performance is estimated using our own ray‐tracing software and computational fluid dynamics (CFD) simulations using a model that we have validated with our own experimental rig. Critical parameters like the width of the mirror strip, the emissivity of solar selective coating, insulation material, and reflectivity of optical cavity walls have been analyzed in this study. A scaled‐up model of the proposed novel receiver with a heat transfer fluid conduit diameter of 70 mm has been simulated to compare the performance with the commercial SCHOTT PTR® 70. The cost of this receiver is estimated to be $30/m as compared to up to $250/m for SCHOTT PTR® 70 with comparable performance. The modular nature of the receiver and reflector gives operational and maintenance flexibility and facile part replacement in case of damage, resulting in low‐cost operation.</description><identifier>ISSN: 0008-4034</identifier><identifier>EISSN: 1939-019X</identifier><identifier>DOI: 10.1002/cjce.24499</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Computational fluid dynamics ; Evacuation ; Fluid dynamics ; Mathematical models ; mirror strip reflector ; Modular design ; non‐evacuated receiver ; parabolic trough ; Solar collectors ; Solar heating ; solar thermal</subject><ispartof>Canadian journal of chemical engineering, 2022-09, Vol.100 (9), p.2259-2278</ispartof><rights>2022 Canadian Society for Chemical Engineering.</rights><rights>2022 Canadian Society for Chemical Engineering</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3019-c56ea5f422cb629828caefdf14470799852d70f8fccb749a09aa3ce5c926e53b3</citedby><cites>FETCH-LOGICAL-c3019-c56ea5f422cb629828caefdf14470799852d70f8fccb749a09aa3ce5c926e53b3</cites><orcidid>0000-0002-4858-213X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Panda, Mihir</creatorcontrib><creatorcontrib>Kumar, Durgesh</creatorcontrib><creatorcontrib>Gharat, Punit V.</creatorcontrib><creatorcontrib>Patil, Ramchandra G.</creatorcontrib><creatorcontrib>Dalvi, Vishwanath H.</creatorcontrib><creatorcontrib>Mathpati, Channamallikarjun S.</creatorcontrib><creatorcontrib>Gaval, Vivek R.</creatorcontrib><creatorcontrib>Deshmukh, Suresh P.</creatorcontrib><creatorcontrib>Panse, Sudhir V.</creatorcontrib><creatorcontrib>Joshi, Jyeshtharaj B.</creatorcontrib><title>Cost effective non‐evacuated receiver for line‐concentrating solar collectors characterized by experimentally validated computational fluid dynamics model</title><title>Canadian journal of chemical engineering</title><description>Solar thermal technology promises to be a significant component of the future renewable energy mix. As the most mature solar thermal technology, parabolic trough concentrators (PTC) are the focus of considerable research. Conventional PTC use evacuated receivers, which contribute 30% of the solar field cost, not including significant failure (55% due to broken glass envelopes and 29% due to loss of vacuum arising due to failure of glass to metal seal). We report a non‐evacuated receiver with a modular design for easier assembly and superior thermal performance for a PTC made of reflective strips of mirrored glass with a rim angle of 60°. The receiver performance is estimated using our own ray‐tracing software and computational fluid dynamics (CFD) simulations using a model that we have validated with our own experimental rig. Critical parameters like the width of the mirror strip, the emissivity of solar selective coating, insulation material, and reflectivity of optical cavity walls have been analyzed in this study. A scaled‐up model of the proposed novel receiver with a heat transfer fluid conduit diameter of 70 mm has been simulated to compare the performance with the commercial SCHOTT PTR® 70. The cost of this receiver is estimated to be $30/m as compared to up to $250/m for SCHOTT PTR® 70 with comparable performance. The modular nature of the receiver and reflector gives operational and maintenance flexibility and facile part replacement in case of damage, resulting in low‐cost operation.</description><subject>Computational fluid dynamics</subject><subject>Evacuation</subject><subject>Fluid dynamics</subject><subject>Mathematical models</subject><subject>mirror strip reflector</subject><subject>Modular design</subject><subject>non‐evacuated receiver</subject><subject>parabolic trough</subject><subject>Solar collectors</subject><subject>Solar heating</subject><subject>solar thermal</subject><issn>0008-4034</issn><issn>1939-019X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAQhq2qSN0Clz6BJW5IAdtxNvERRbSAVuICUm_RZDJus_LGi51sCac-Qp-Ah-uTYHZ77mk0428-eX7GvkhxIYVQl7hGulBaG_OBLaTJTSak-f6RLYQQVaZFrj-xzzGuU6uElgv2Wvs4crKWcOx3xAc__P39h3aAE4zU8UBIaR649YG7fqD0in5AGsYAYz_84NE7CBy9c0nhQ-T4EwLgSKF_SYJ25vS8Tc0mrYBzM9-B67u9HP1mO41J4wdw3Lqp73g3D7DpMfKN78idsCMLLtLpv3rMHr9eP9Q32er-2219tcowTwdmWCwJCquVwnapTKUqBLKdlVqXojSmKlRXCltZxLbUBoQByJEKNGpJRd7mx-zs4N0G_zRRHJu1n0L6VWxUKaSoVKlUos4PFAYfYyDbbNNdEOZGiuY9_-Y9_2aff4LlAf7VO5r_Qzb1XX192HkDJm6PYQ</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Panda, Mihir</creator><creator>Kumar, Durgesh</creator><creator>Gharat, Punit V.</creator><creator>Patil, Ramchandra G.</creator><creator>Dalvi, Vishwanath H.</creator><creator>Mathpati, Channamallikarjun S.</creator><creator>Gaval, Vivek R.</creator><creator>Deshmukh, Suresh P.</creator><creator>Panse, Sudhir V.</creator><creator>Joshi, Jyeshtharaj B.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4858-213X</orcidid></search><sort><creationdate>202209</creationdate><title>Cost effective non‐evacuated receiver for line‐concentrating solar collectors characterized by experimentally validated computational fluid dynamics model</title><author>Panda, Mihir ; Kumar, Durgesh ; Gharat, Punit V. ; Patil, Ramchandra G. ; Dalvi, Vishwanath H. ; Mathpati, Channamallikarjun S. ; Gaval, Vivek R. ; Deshmukh, Suresh P. ; Panse, Sudhir V. ; Joshi, Jyeshtharaj B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3019-c56ea5f422cb629828caefdf14470799852d70f8fccb749a09aa3ce5c926e53b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational fluid dynamics</topic><topic>Evacuation</topic><topic>Fluid dynamics</topic><topic>Mathematical models</topic><topic>mirror strip reflector</topic><topic>Modular design</topic><topic>non‐evacuated receiver</topic><topic>parabolic trough</topic><topic>Solar collectors</topic><topic>Solar heating</topic><topic>solar thermal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panda, Mihir</creatorcontrib><creatorcontrib>Kumar, Durgesh</creatorcontrib><creatorcontrib>Gharat, Punit V.</creatorcontrib><creatorcontrib>Patil, Ramchandra G.</creatorcontrib><creatorcontrib>Dalvi, Vishwanath H.</creatorcontrib><creatorcontrib>Mathpati, Channamallikarjun S.</creatorcontrib><creatorcontrib>Gaval, Vivek R.</creatorcontrib><creatorcontrib>Deshmukh, Suresh P.</creatorcontrib><creatorcontrib>Panse, Sudhir V.</creatorcontrib><creatorcontrib>Joshi, Jyeshtharaj B.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Canadian journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panda, Mihir</au><au>Kumar, Durgesh</au><au>Gharat, Punit V.</au><au>Patil, Ramchandra G.</au><au>Dalvi, Vishwanath H.</au><au>Mathpati, Channamallikarjun S.</au><au>Gaval, Vivek R.</au><au>Deshmukh, Suresh P.</au><au>Panse, Sudhir V.</au><au>Joshi, Jyeshtharaj B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cost effective non‐evacuated receiver for line‐concentrating solar collectors characterized by experimentally validated computational fluid dynamics model</atitle><jtitle>Canadian journal of chemical engineering</jtitle><date>2022-09</date><risdate>2022</risdate><volume>100</volume><issue>9</issue><spage>2259</spage><epage>2278</epage><pages>2259-2278</pages><issn>0008-4034</issn><eissn>1939-019X</eissn><abstract>Solar thermal technology promises to be a significant component of the future renewable energy mix. As the most mature solar thermal technology, parabolic trough concentrators (PTC) are the focus of considerable research. Conventional PTC use evacuated receivers, which contribute 30% of the solar field cost, not including significant failure (55% due to broken glass envelopes and 29% due to loss of vacuum arising due to failure of glass to metal seal). We report a non‐evacuated receiver with a modular design for easier assembly and superior thermal performance for a PTC made of reflective strips of mirrored glass with a rim angle of 60°. The receiver performance is estimated using our own ray‐tracing software and computational fluid dynamics (CFD) simulations using a model that we have validated with our own experimental rig. Critical parameters like the width of the mirror strip, the emissivity of solar selective coating, insulation material, and reflectivity of optical cavity walls have been analyzed in this study. A scaled‐up model of the proposed novel receiver with a heat transfer fluid conduit diameter of 70 mm has been simulated to compare the performance with the commercial SCHOTT PTR® 70. The cost of this receiver is estimated to be $30/m as compared to up to $250/m for SCHOTT PTR® 70 with comparable performance. The modular nature of the receiver and reflector gives operational and maintenance flexibility and facile part replacement in case of damage, resulting in low‐cost operation.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/cjce.24499</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4858-213X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-4034
ispartof Canadian journal of chemical engineering, 2022-09, Vol.100 (9), p.2259-2278
issn 0008-4034
1939-019X
language eng
recordid cdi_proquest_journals_2701082722
source Wiley-Blackwell Read & Publish Collection
subjects Computational fluid dynamics
Evacuation
Fluid dynamics
Mathematical models
mirror strip reflector
Modular design
non‐evacuated receiver
parabolic trough
Solar collectors
Solar heating
solar thermal
title Cost effective non‐evacuated receiver for line‐concentrating solar collectors characterized by experimentally validated computational fluid dynamics model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cost%20effective%20non%E2%80%90evacuated%20receiver%20for%20line%E2%80%90concentrating%20solar%20collectors%20characterized%20by%20experimentally%20validated%20computational%20fluid%20dynamics%20model&rft.jtitle=Canadian%20journal%20of%20chemical%20engineering&rft.au=Panda,%20Mihir&rft.date=2022-09&rft.volume=100&rft.issue=9&rft.spage=2259&rft.epage=2278&rft.pages=2259-2278&rft.issn=0008-4034&rft.eissn=1939-019X&rft_id=info:doi/10.1002/cjce.24499&rft_dat=%3Cproquest_cross%3E2701082722%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3019-c56ea5f422cb629828caefdf14470799852d70f8fccb749a09aa3ce5c926e53b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2701082722&rft_id=info:pmid/&rfr_iscdi=true