Loading…

Laser powder bed fusion of a Nb-based refractory alloy: Microstructure and tensile properties

In this study, Nb521 (Nb–5W–2Mo–1Zr) parts were successfully fabricated by laser powder bed fusion (LPBF) using quasi-spherical hydride-dehydride (HDH) powders modified by jet milling. The relative density of the LPBF made (LPBFed) Nb521 parts is 98.8 ± 0.2%, which were subsequently subjected to hot...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2022-05, Vol.843, p.143153, Article 143153
Main Authors: Chen, Jianan, Ding, Wangwang, Tao, Qiying, Ma, Chuanzhen, Zhang, Cong, Chen, Gang, Qin, Mingli, Qu, Xuanhui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, Nb521 (Nb–5W–2Mo–1Zr) parts were successfully fabricated by laser powder bed fusion (LPBF) using quasi-spherical hydride-dehydride (HDH) powders modified by jet milling. The relative density of the LPBF made (LPBFed) Nb521 parts is 98.8 ± 0.2%, which were subsequently subjected to hot isostatic pressing (HIP) to achieve almost full densification. Nanoscale ZrO2 precipitates were found in the LPBFed parts and those after HIP (HIPed), showing semi-coherent with the matrix. The precipitation behavior is strongly related to the melt pool solidification process during LPBF in terms of thermal distribution and solidification rate. The LPBFed Nb521 parts after HIP presented sound tensile properties with the fracture strength of 678.7 ± 1.1 MPa and elongation of 5.91 ± 0.32%. The precipitated nanoscale ZrO2 underwent plastic deformation after tension, exhibiting the stress-induced tetragonal-to-monoclinic phase transformation and shearing by dislocations. This work presents the LPBFed Nb521 alloy with promising performance by employing low-cost jet-milled HDH powders.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2022.143153