Loading…
Exploiting Hierarchical Dependence Structures for Unsupervised Rank Fusion in Information Retrieval
The goal of rank fusion in information retrieval (IR) is to deliver a single output list from multiple search results. Improving performance by combining the outputs of various IR systems is a challenging task. A central point is the fact that many non-obvious factors are involved in the estimation...
Saved in:
Published in: | arXiv.org 2022-08 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hermosillo-Valadez, J Morales-González, E Fernández-Reyes, F Montes-y-Gómez, M Fuentes-Pacheco, J Rendón-Mancha, J M |
description | The goal of rank fusion in information retrieval (IR) is to deliver a single output list from multiple search results. Improving performance by combining the outputs of various IR systems is a challenging task. A central point is the fact that many non-obvious factors are involved in the estimation of relevance, inducing nonlinear interrelations between the data. The ability to model complex dependency relationships between random variables has become increasingly popular in the realm of information retrieval, and the need to further explore these dependencies for data fusion has been recently acknowledged. Copulas provide a framework to separate the dependence structure from the margins. Inspired by the theory of copulas, we propose a new unsupervised, dynamic, nonlinear, rank fusion method, based on a nested composition of non-algebraic function pairs. The dependence structure of the model is tailored by leveraging query-document correlations on a per-query basis. We experimented with three topic sets over CLEF corpora fusing 3 and 6 retrieval systems, comparing our method against the CombMNZ technique and other nonlinear unsupervised strategies. The experiments show that our fusion approach improves performance under explicit conditions, providing insight about the circumstances under which linear fusion techniques have comparable performance to nonlinear methods. |
doi_str_mv | 10.48550/arxiv.2208.05574 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2701333319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2701333319</sourcerecordid><originalsourceid>FETCH-LOGICAL-a954-94883508e7e75784dedd2db7919983f21da8b9d7cdc1e0b9cdb5fc875f1570213</originalsourceid><addsrcrecordid>eNotjV1LwzAYhYMgOOZ-gHcBr1vz0ZjkUubmBgNhzuuRJm81s6Y1acp-vh16bg4PHJ6D0B0lZaWEIA8mnv1YMkZUSYSQ1RWaMc5poSrGbtAipRMhhD1KJgSfIbs6923nBx8-8MZDNNF-emta_Aw9BAfBAn4bYrZDjpBw00X8HlLuIY4-gcN7E77wOiffBewD3oZp8W2GC-5hiB5G096i68a0CRb_PUeH9eqw3BS715ft8mlXGC2qQldKcUEUSJBCqsqBc8zVUlOtFW8YdUbV2knrLAVSa-tq0VglRUOFJIzyObr_0_ax-8mQhuOpyzFMj0cmCeVTqOa__xxYkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2701333319</pqid></control><display><type>article</type><title>Exploiting Hierarchical Dependence Structures for Unsupervised Rank Fusion in Information Retrieval</title><source>Publicly Available Content Database</source><creator>Hermosillo-Valadez, J ; Morales-González, E ; Fernández-Reyes, F ; Montes-y-Gómez, M ; Fuentes-Pacheco, J ; Rendón-Mancha, J M</creator><creatorcontrib>Hermosillo-Valadez, J ; Morales-González, E ; Fernández-Reyes, F ; Montes-y-Gómez, M ; Fuentes-Pacheco, J ; Rendón-Mancha, J M</creatorcontrib><description>The goal of rank fusion in information retrieval (IR) is to deliver a single output list from multiple search results. Improving performance by combining the outputs of various IR systems is a challenging task. A central point is the fact that many non-obvious factors are involved in the estimation of relevance, inducing nonlinear interrelations between the data. The ability to model complex dependency relationships between random variables has become increasingly popular in the realm of information retrieval, and the need to further explore these dependencies for data fusion has been recently acknowledged. Copulas provide a framework to separate the dependence structure from the margins. Inspired by the theory of copulas, we propose a new unsupervised, dynamic, nonlinear, rank fusion method, based on a nested composition of non-algebraic function pairs. The dependence structure of the model is tailored by leveraging query-document correlations on a per-query basis. We experimented with three topic sets over CLEF corpora fusing 3 and 6 retrieval systems, comparing our method against the CombMNZ technique and other nonlinear unsupervised strategies. The experiments show that our fusion approach improves performance under explicit conditions, providing insight about the circumstances under which linear fusion techniques have comparable performance to nonlinear methods.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2208.05574</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data integration ; Information retrieval ; Performance enhancement ; Random variables ; Structural hierarchy</subject><ispartof>arXiv.org, 2022-08</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2701333319?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Hermosillo-Valadez, J</creatorcontrib><creatorcontrib>Morales-González, E</creatorcontrib><creatorcontrib>Fernández-Reyes, F</creatorcontrib><creatorcontrib>Montes-y-Gómez, M</creatorcontrib><creatorcontrib>Fuentes-Pacheco, J</creatorcontrib><creatorcontrib>Rendón-Mancha, J M</creatorcontrib><title>Exploiting Hierarchical Dependence Structures for Unsupervised Rank Fusion in Information Retrieval</title><title>arXiv.org</title><description>The goal of rank fusion in information retrieval (IR) is to deliver a single output list from multiple search results. Improving performance by combining the outputs of various IR systems is a challenging task. A central point is the fact that many non-obvious factors are involved in the estimation of relevance, inducing nonlinear interrelations between the data. The ability to model complex dependency relationships between random variables has become increasingly popular in the realm of information retrieval, and the need to further explore these dependencies for data fusion has been recently acknowledged. Copulas provide a framework to separate the dependence structure from the margins. Inspired by the theory of copulas, we propose a new unsupervised, dynamic, nonlinear, rank fusion method, based on a nested composition of non-algebraic function pairs. The dependence structure of the model is tailored by leveraging query-document correlations on a per-query basis. We experimented with three topic sets over CLEF corpora fusing 3 and 6 retrieval systems, comparing our method against the CombMNZ technique and other nonlinear unsupervised strategies. The experiments show that our fusion approach improves performance under explicit conditions, providing insight about the circumstances under which linear fusion techniques have comparable performance to nonlinear methods.</description><subject>Data integration</subject><subject>Information retrieval</subject><subject>Performance enhancement</subject><subject>Random variables</subject><subject>Structural hierarchy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjV1LwzAYhYMgOOZ-gHcBr1vz0ZjkUubmBgNhzuuRJm81s6Y1acp-vh16bg4PHJ6D0B0lZaWEIA8mnv1YMkZUSYSQ1RWaMc5poSrGbtAipRMhhD1KJgSfIbs6923nBx8-8MZDNNF-emta_Aw9BAfBAn4bYrZDjpBw00X8HlLuIY4-gcN7E77wOiffBewD3oZp8W2GC-5hiB5G096i68a0CRb_PUeH9eqw3BS715ft8mlXGC2qQldKcUEUSJBCqsqBc8zVUlOtFW8YdUbV2knrLAVSa-tq0VglRUOFJIzyObr_0_ax-8mQhuOpyzFMj0cmCeVTqOa__xxYkg</recordid><startdate>20220810</startdate><enddate>20220810</enddate><creator>Hermosillo-Valadez, J</creator><creator>Morales-González, E</creator><creator>Fernández-Reyes, F</creator><creator>Montes-y-Gómez, M</creator><creator>Fuentes-Pacheco, J</creator><creator>Rendón-Mancha, J M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220810</creationdate><title>Exploiting Hierarchical Dependence Structures for Unsupervised Rank Fusion in Information Retrieval</title><author>Hermosillo-Valadez, J ; Morales-González, E ; Fernández-Reyes, F ; Montes-y-Gómez, M ; Fuentes-Pacheco, J ; Rendón-Mancha, J M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a954-94883508e7e75784dedd2db7919983f21da8b9d7cdc1e0b9cdb5fc875f1570213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data integration</topic><topic>Information retrieval</topic><topic>Performance enhancement</topic><topic>Random variables</topic><topic>Structural hierarchy</topic><toplevel>online_resources</toplevel><creatorcontrib>Hermosillo-Valadez, J</creatorcontrib><creatorcontrib>Morales-González, E</creatorcontrib><creatorcontrib>Fernández-Reyes, F</creatorcontrib><creatorcontrib>Montes-y-Gómez, M</creatorcontrib><creatorcontrib>Fuentes-Pacheco, J</creatorcontrib><creatorcontrib>Rendón-Mancha, J M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hermosillo-Valadez, J</au><au>Morales-González, E</au><au>Fernández-Reyes, F</au><au>Montes-y-Gómez, M</au><au>Fuentes-Pacheco, J</au><au>Rendón-Mancha, J M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting Hierarchical Dependence Structures for Unsupervised Rank Fusion in Information Retrieval</atitle><jtitle>arXiv.org</jtitle><date>2022-08-10</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The goal of rank fusion in information retrieval (IR) is to deliver a single output list from multiple search results. Improving performance by combining the outputs of various IR systems is a challenging task. A central point is the fact that many non-obvious factors are involved in the estimation of relevance, inducing nonlinear interrelations between the data. The ability to model complex dependency relationships between random variables has become increasingly popular in the realm of information retrieval, and the need to further explore these dependencies for data fusion has been recently acknowledged. Copulas provide a framework to separate the dependence structure from the margins. Inspired by the theory of copulas, we propose a new unsupervised, dynamic, nonlinear, rank fusion method, based on a nested composition of non-algebraic function pairs. The dependence structure of the model is tailored by leveraging query-document correlations on a per-query basis. We experimented with three topic sets over CLEF corpora fusing 3 and 6 retrieval systems, comparing our method against the CombMNZ technique and other nonlinear unsupervised strategies. The experiments show that our fusion approach improves performance under explicit conditions, providing insight about the circumstances under which linear fusion techniques have comparable performance to nonlinear methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2208.05574</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2701333319 |
source | Publicly Available Content Database |
subjects | Data integration Information retrieval Performance enhancement Random variables Structural hierarchy |
title | Exploiting Hierarchical Dependence Structures for Unsupervised Rank Fusion in Information Retrieval |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A38%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20Hierarchical%20Dependence%20Structures%20for%20Unsupervised%20Rank%20Fusion%20in%20Information%20Retrieval&rft.jtitle=arXiv.org&rft.au=Hermosillo-Valadez,%20J&rft.date=2022-08-10&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2208.05574&rft_dat=%3Cproquest%3E2701333319%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a954-94883508e7e75784dedd2db7919983f21da8b9d7cdc1e0b9cdb5fc875f1570213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2701333319&rft_id=info:pmid/&rfr_iscdi=true |