Loading…

Estimation of distribution algorithms using Gaussian Bayesian networks to solve industrial optimization problems constrained by environment variables

Many real-world optimization problems involve two different subsets of variables: decision variables, and those variables which are not present in the cost function but constrain the solutions, and thus, must be considered during optimization. Thus, dependencies between and within both subsets of va...

Full description

Saved in:
Bibliographic Details
Published in:Journal of combinatorial optimization 2022-09, Vol.44 (2), p.1077-1098
Main Authors: Soloviev, Vicente P., Larrañaga, Pedro, Bielza, Concha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-2e57a5ee62eb1e566a6f5895db586f530db63d57810b000aa711928126c9d4da3
cites cdi_FETCH-LOGICAL-c293t-2e57a5ee62eb1e566a6f5895db586f530db63d57810b000aa711928126c9d4da3
container_end_page 1098
container_issue 2
container_start_page 1077
container_title Journal of combinatorial optimization
container_volume 44
creator Soloviev, Vicente P.
Larrañaga, Pedro
Bielza, Concha
description Many real-world optimization problems involve two different subsets of variables: decision variables, and those variables which are not present in the cost function but constrain the solutions, and thus, must be considered during optimization. Thus, dependencies between and within both subsets of variables must be considered. In this paper, an estimation of distribution algorithm (EDA) is implemented to solve this type of complex optimization problems. A Gaussian Bayesian network is used to build an abstraction model of the search space in each iteration to identify patterns among the variables. As the algorithm is initialized from data, we introduce a new hyper-parameter to control the influence of the initial data in the decisions made during the EDA execution. The results show that our algorithm improves the cost function more than the expert knowledge does.
doi_str_mv 10.1007/s10878-022-00879-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2701852886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2701852886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-2e57a5ee62eb1e566a6f5895db586f530db63d57810b000aa711928126c9d4da3</originalsourceid><addsrcrecordid>eNp9kFFPwyAUhYnRxDn9Az6R-FwFOih91EWnyRJf9JnQlk5mB5NLZ-b_8P9KVxPffOKQe86B-yF0Sck1JaS4AUpkITPCWEaSKjNxhCaUF3nGpBTHSeeSZaIk_BSdAawJIUnPJuj7HqLd6Gi9w77FjYUYbNUf7rpb-WDj2wZwD9at8EL3AFY7fKf35iCciZ8-vAOOHoPvdgZb1_RDh-6w36Zq-zWWb4OvOpOqau_SXFtnGlztsXE7G7zbGBfxTqdccsE5Oml1B-bi95yi14f7l_ljtnxePM1vl1nNyjxmzPBCc2MEMxU1XAgtWi5L3lRcJpWTphJ5wwtJSZU21rqgtGSSMlGXzazR-RRdjb3pdx-9gajWvg8uPalYQajkA73kYqOrDh4gmFZtQ2IW9ooSNeBXI36V8KsDfjWE8jEEyexWJvxV_5P6ATwPjRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2701852886</pqid></control><display><type>article</type><title>Estimation of distribution algorithms using Gaussian Bayesian networks to solve industrial optimization problems constrained by environment variables</title><source>Springer Nature</source><creator>Soloviev, Vicente P. ; Larrañaga, Pedro ; Bielza, Concha</creator><creatorcontrib>Soloviev, Vicente P. ; Larrañaga, Pedro ; Bielza, Concha</creatorcontrib><description>Many real-world optimization problems involve two different subsets of variables: decision variables, and those variables which are not present in the cost function but constrain the solutions, and thus, must be considered during optimization. Thus, dependencies between and within both subsets of variables must be considered. In this paper, an estimation of distribution algorithm (EDA) is implemented to solve this type of complex optimization problems. A Gaussian Bayesian network is used to build an abstraction model of the search space in each iteration to identify patterns among the variables. As the algorithm is initialized from data, we introduce a new hyper-parameter to control the influence of the initial data in the decisions made during the EDA execution. The results show that our algorithm improves the cost function more than the expert knowledge does.</description><identifier>ISSN: 1382-6905</identifier><identifier>EISSN: 1573-2886</identifier><identifier>DOI: 10.1007/s10878-022-00879-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Bayesian analysis ; Combinatorics ; Convex and Discrete Geometry ; Cost function ; Iterative methods ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Normal distribution ; Operations Research/Decision Theory ; Optimization ; Real variables ; Theory of Computation</subject><ispartof>Journal of combinatorial optimization, 2022-09, Vol.44 (2), p.1077-1098</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-2e57a5ee62eb1e566a6f5895db586f530db63d57810b000aa711928126c9d4da3</citedby><cites>FETCH-LOGICAL-c293t-2e57a5ee62eb1e566a6f5895db586f530db63d57810b000aa711928126c9d4da3</cites><orcidid>0000-0003-0050-0235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Soloviev, Vicente P.</creatorcontrib><creatorcontrib>Larrañaga, Pedro</creatorcontrib><creatorcontrib>Bielza, Concha</creatorcontrib><title>Estimation of distribution algorithms using Gaussian Bayesian networks to solve industrial optimization problems constrained by environment variables</title><title>Journal of combinatorial optimization</title><addtitle>J Comb Optim</addtitle><description>Many real-world optimization problems involve two different subsets of variables: decision variables, and those variables which are not present in the cost function but constrain the solutions, and thus, must be considered during optimization. Thus, dependencies between and within both subsets of variables must be considered. In this paper, an estimation of distribution algorithm (EDA) is implemented to solve this type of complex optimization problems. A Gaussian Bayesian network is used to build an abstraction model of the search space in each iteration to identify patterns among the variables. As the algorithm is initialized from data, we introduce a new hyper-parameter to control the influence of the initial data in the decisions made during the EDA execution. The results show that our algorithm improves the cost function more than the expert knowledge does.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Combinatorics</subject><subject>Convex and Discrete Geometry</subject><subject>Cost function</subject><subject>Iterative methods</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Normal distribution</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Real variables</subject><subject>Theory of Computation</subject><issn>1382-6905</issn><issn>1573-2886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kFFPwyAUhYnRxDn9Az6R-FwFOih91EWnyRJf9JnQlk5mB5NLZ-b_8P9KVxPffOKQe86B-yF0Sck1JaS4AUpkITPCWEaSKjNxhCaUF3nGpBTHSeeSZaIk_BSdAawJIUnPJuj7HqLd6Gi9w77FjYUYbNUf7rpb-WDj2wZwD9at8EL3AFY7fKf35iCciZ8-vAOOHoPvdgZb1_RDh-6w36Zq-zWWb4OvOpOqau_SXFtnGlztsXE7G7zbGBfxTqdccsE5Oml1B-bi95yi14f7l_ljtnxePM1vl1nNyjxmzPBCc2MEMxU1XAgtWi5L3lRcJpWTphJ5wwtJSZU21rqgtGSSMlGXzazR-RRdjb3pdx-9gajWvg8uPalYQajkA73kYqOrDh4gmFZtQ2IW9ooSNeBXI36V8KsDfjWE8jEEyexWJvxV_5P6ATwPjRc</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Soloviev, Vicente P.</creator><creator>Larrañaga, Pedro</creator><creator>Bielza, Concha</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0050-0235</orcidid></search><sort><creationdate>20220901</creationdate><title>Estimation of distribution algorithms using Gaussian Bayesian networks to solve industrial optimization problems constrained by environment variables</title><author>Soloviev, Vicente P. ; Larrañaga, Pedro ; Bielza, Concha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-2e57a5ee62eb1e566a6f5895db586f530db63d57810b000aa711928126c9d4da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Combinatorics</topic><topic>Convex and Discrete Geometry</topic><topic>Cost function</topic><topic>Iterative methods</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Normal distribution</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Real variables</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soloviev, Vicente P.</creatorcontrib><creatorcontrib>Larrañaga, Pedro</creatorcontrib><creatorcontrib>Bielza, Concha</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of combinatorial optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soloviev, Vicente P.</au><au>Larrañaga, Pedro</au><au>Bielza, Concha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of distribution algorithms using Gaussian Bayesian networks to solve industrial optimization problems constrained by environment variables</atitle><jtitle>Journal of combinatorial optimization</jtitle><stitle>J Comb Optim</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>44</volume><issue>2</issue><spage>1077</spage><epage>1098</epage><pages>1077-1098</pages><issn>1382-6905</issn><eissn>1573-2886</eissn><abstract>Many real-world optimization problems involve two different subsets of variables: decision variables, and those variables which are not present in the cost function but constrain the solutions, and thus, must be considered during optimization. Thus, dependencies between and within both subsets of variables must be considered. In this paper, an estimation of distribution algorithm (EDA) is implemented to solve this type of complex optimization problems. A Gaussian Bayesian network is used to build an abstraction model of the search space in each iteration to identify patterns among the variables. As the algorithm is initialized from data, we introduce a new hyper-parameter to control the influence of the initial data in the decisions made during the EDA execution. The results show that our algorithm improves the cost function more than the expert knowledge does.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10878-022-00879-6</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-0050-0235</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1382-6905
ispartof Journal of combinatorial optimization, 2022-09, Vol.44 (2), p.1077-1098
issn 1382-6905
1573-2886
language eng
recordid cdi_proquest_journals_2701852886
source Springer Nature
subjects Algorithms
Bayesian analysis
Combinatorics
Convex and Discrete Geometry
Cost function
Iterative methods
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Normal distribution
Operations Research/Decision Theory
Optimization
Real variables
Theory of Computation
title Estimation of distribution algorithms using Gaussian Bayesian networks to solve industrial optimization problems constrained by environment variables
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A12%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20distribution%20algorithms%20using%20Gaussian%20Bayesian%20networks%20to%20solve%20industrial%20optimization%20problems%20constrained%20by%20environment%20variables&rft.jtitle=Journal%20of%20combinatorial%20optimization&rft.au=Soloviev,%20Vicente%20P.&rft.date=2022-09-01&rft.volume=44&rft.issue=2&rft.spage=1077&rft.epage=1098&rft.pages=1077-1098&rft.issn=1382-6905&rft.eissn=1573-2886&rft_id=info:doi/10.1007/s10878-022-00879-6&rft_dat=%3Cproquest_cross%3E2701852886%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-2e57a5ee62eb1e566a6f5895db586f530db63d57810b000aa711928126c9d4da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2701852886&rft_id=info:pmid/&rfr_iscdi=true