Loading…
Estimation of distribution algorithms using Gaussian Bayesian networks to solve industrial optimization problems constrained by environment variables
Many real-world optimization problems involve two different subsets of variables: decision variables, and those variables which are not present in the cost function but constrain the solutions, and thus, must be considered during optimization. Thus, dependencies between and within both subsets of va...
Saved in:
Published in: | Journal of combinatorial optimization 2022-09, Vol.44 (2), p.1077-1098 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-2e57a5ee62eb1e566a6f5895db586f530db63d57810b000aa711928126c9d4da3 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-2e57a5ee62eb1e566a6f5895db586f530db63d57810b000aa711928126c9d4da3 |
container_end_page | 1098 |
container_issue | 2 |
container_start_page | 1077 |
container_title | Journal of combinatorial optimization |
container_volume | 44 |
creator | Soloviev, Vicente P. Larrañaga, Pedro Bielza, Concha |
description | Many real-world optimization problems involve two different subsets of variables: decision variables, and those variables which are not present in the cost function but constrain the solutions, and thus, must be considered during optimization. Thus, dependencies between and within both subsets of variables must be considered. In this paper, an estimation of distribution algorithm (EDA) is implemented to solve this type of complex optimization problems. A Gaussian Bayesian network is used to build an abstraction model of the search space in each iteration to identify patterns among the variables. As the algorithm is initialized from data, we introduce a new hyper-parameter to control the influence of the initial data in the decisions made during the EDA execution. The results show that our algorithm improves the cost function more than the expert knowledge does. |
doi_str_mv | 10.1007/s10878-022-00879-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2701852886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2701852886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-2e57a5ee62eb1e566a6f5895db586f530db63d57810b000aa711928126c9d4da3</originalsourceid><addsrcrecordid>eNp9kFFPwyAUhYnRxDn9Az6R-FwFOih91EWnyRJf9JnQlk5mB5NLZ-b_8P9KVxPffOKQe86B-yF0Sck1JaS4AUpkITPCWEaSKjNxhCaUF3nGpBTHSeeSZaIk_BSdAawJIUnPJuj7HqLd6Gi9w77FjYUYbNUf7rpb-WDj2wZwD9at8EL3AFY7fKf35iCciZ8-vAOOHoPvdgZb1_RDh-6w36Zq-zWWb4OvOpOqau_SXFtnGlztsXE7G7zbGBfxTqdccsE5Oml1B-bi95yi14f7l_ljtnxePM1vl1nNyjxmzPBCc2MEMxU1XAgtWi5L3lRcJpWTphJ5wwtJSZU21rqgtGSSMlGXzazR-RRdjb3pdx-9gajWvg8uPalYQajkA73kYqOrDh4gmFZtQ2IW9ooSNeBXI36V8KsDfjWE8jEEyexWJvxV_5P6ATwPjRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2701852886</pqid></control><display><type>article</type><title>Estimation of distribution algorithms using Gaussian Bayesian networks to solve industrial optimization problems constrained by environment variables</title><source>Springer Nature</source><creator>Soloviev, Vicente P. ; Larrañaga, Pedro ; Bielza, Concha</creator><creatorcontrib>Soloviev, Vicente P. ; Larrañaga, Pedro ; Bielza, Concha</creatorcontrib><description>Many real-world optimization problems involve two different subsets of variables: decision variables, and those variables which are not present in the cost function but constrain the solutions, and thus, must be considered during optimization. Thus, dependencies between and within both subsets of variables must be considered. In this paper, an estimation of distribution algorithm (EDA) is implemented to solve this type of complex optimization problems. A Gaussian Bayesian network is used to build an abstraction model of the search space in each iteration to identify patterns among the variables. As the algorithm is initialized from data, we introduce a new hyper-parameter to control the influence of the initial data in the decisions made during the EDA execution. The results show that our algorithm improves the cost function more than the expert knowledge does.</description><identifier>ISSN: 1382-6905</identifier><identifier>EISSN: 1573-2886</identifier><identifier>DOI: 10.1007/s10878-022-00879-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Bayesian analysis ; Combinatorics ; Convex and Discrete Geometry ; Cost function ; Iterative methods ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Normal distribution ; Operations Research/Decision Theory ; Optimization ; Real variables ; Theory of Computation</subject><ispartof>Journal of combinatorial optimization, 2022-09, Vol.44 (2), p.1077-1098</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-2e57a5ee62eb1e566a6f5895db586f530db63d57810b000aa711928126c9d4da3</citedby><cites>FETCH-LOGICAL-c293t-2e57a5ee62eb1e566a6f5895db586f530db63d57810b000aa711928126c9d4da3</cites><orcidid>0000-0003-0050-0235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Soloviev, Vicente P.</creatorcontrib><creatorcontrib>Larrañaga, Pedro</creatorcontrib><creatorcontrib>Bielza, Concha</creatorcontrib><title>Estimation of distribution algorithms using Gaussian Bayesian networks to solve industrial optimization problems constrained by environment variables</title><title>Journal of combinatorial optimization</title><addtitle>J Comb Optim</addtitle><description>Many real-world optimization problems involve two different subsets of variables: decision variables, and those variables which are not present in the cost function but constrain the solutions, and thus, must be considered during optimization. Thus, dependencies between and within both subsets of variables must be considered. In this paper, an estimation of distribution algorithm (EDA) is implemented to solve this type of complex optimization problems. A Gaussian Bayesian network is used to build an abstraction model of the search space in each iteration to identify patterns among the variables. As the algorithm is initialized from data, we introduce a new hyper-parameter to control the influence of the initial data in the decisions made during the EDA execution. The results show that our algorithm improves the cost function more than the expert knowledge does.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Combinatorics</subject><subject>Convex and Discrete Geometry</subject><subject>Cost function</subject><subject>Iterative methods</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Normal distribution</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Real variables</subject><subject>Theory of Computation</subject><issn>1382-6905</issn><issn>1573-2886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kFFPwyAUhYnRxDn9Az6R-FwFOih91EWnyRJf9JnQlk5mB5NLZ-b_8P9KVxPffOKQe86B-yF0Sck1JaS4AUpkITPCWEaSKjNxhCaUF3nGpBTHSeeSZaIk_BSdAawJIUnPJuj7HqLd6Gi9w77FjYUYbNUf7rpb-WDj2wZwD9at8EL3AFY7fKf35iCciZ8-vAOOHoPvdgZb1_RDh-6w36Zq-zWWb4OvOpOqau_SXFtnGlztsXE7G7zbGBfxTqdccsE5Oml1B-bi95yi14f7l_ljtnxePM1vl1nNyjxmzPBCc2MEMxU1XAgtWi5L3lRcJpWTphJ5wwtJSZU21rqgtGSSMlGXzazR-RRdjb3pdx-9gajWvg8uPalYQajkA73kYqOrDh4gmFZtQ2IW9ooSNeBXI36V8KsDfjWE8jEEyexWJvxV_5P6ATwPjRc</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Soloviev, Vicente P.</creator><creator>Larrañaga, Pedro</creator><creator>Bielza, Concha</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0050-0235</orcidid></search><sort><creationdate>20220901</creationdate><title>Estimation of distribution algorithms using Gaussian Bayesian networks to solve industrial optimization problems constrained by environment variables</title><author>Soloviev, Vicente P. ; Larrañaga, Pedro ; Bielza, Concha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-2e57a5ee62eb1e566a6f5895db586f530db63d57810b000aa711928126c9d4da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Combinatorics</topic><topic>Convex and Discrete Geometry</topic><topic>Cost function</topic><topic>Iterative methods</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Normal distribution</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Real variables</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soloviev, Vicente P.</creatorcontrib><creatorcontrib>Larrañaga, Pedro</creatorcontrib><creatorcontrib>Bielza, Concha</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of combinatorial optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soloviev, Vicente P.</au><au>Larrañaga, Pedro</au><au>Bielza, Concha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of distribution algorithms using Gaussian Bayesian networks to solve industrial optimization problems constrained by environment variables</atitle><jtitle>Journal of combinatorial optimization</jtitle><stitle>J Comb Optim</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>44</volume><issue>2</issue><spage>1077</spage><epage>1098</epage><pages>1077-1098</pages><issn>1382-6905</issn><eissn>1573-2886</eissn><abstract>Many real-world optimization problems involve two different subsets of variables: decision variables, and those variables which are not present in the cost function but constrain the solutions, and thus, must be considered during optimization. Thus, dependencies between and within both subsets of variables must be considered. In this paper, an estimation of distribution algorithm (EDA) is implemented to solve this type of complex optimization problems. A Gaussian Bayesian network is used to build an abstraction model of the search space in each iteration to identify patterns among the variables. As the algorithm is initialized from data, we introduce a new hyper-parameter to control the influence of the initial data in the decisions made during the EDA execution. The results show that our algorithm improves the cost function more than the expert knowledge does.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10878-022-00879-6</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-0050-0235</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1382-6905 |
ispartof | Journal of combinatorial optimization, 2022-09, Vol.44 (2), p.1077-1098 |
issn | 1382-6905 1573-2886 |
language | eng |
recordid | cdi_proquest_journals_2701852886 |
source | Springer Nature |
subjects | Algorithms Bayesian analysis Combinatorics Convex and Discrete Geometry Cost function Iterative methods Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Normal distribution Operations Research/Decision Theory Optimization Real variables Theory of Computation |
title | Estimation of distribution algorithms using Gaussian Bayesian networks to solve industrial optimization problems constrained by environment variables |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A12%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20distribution%20algorithms%20using%20Gaussian%20Bayesian%20networks%20to%20solve%20industrial%20optimization%20problems%20constrained%20by%20environment%20variables&rft.jtitle=Journal%20of%20combinatorial%20optimization&rft.au=Soloviev,%20Vicente%20P.&rft.date=2022-09-01&rft.volume=44&rft.issue=2&rft.spage=1077&rft.epage=1098&rft.pages=1077-1098&rft.issn=1382-6905&rft.eissn=1573-2886&rft_id=info:doi/10.1007/s10878-022-00879-6&rft_dat=%3Cproquest_cross%3E2701852886%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-2e57a5ee62eb1e566a6f5895db586f530db63d57810b000aa711928126c9d4da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2701852886&rft_id=info:pmid/&rfr_iscdi=true |