Loading…

Stability threshold for 2D shear flows of the Boussinesq system near Couette

In this paper, we consider the nonlinear stability for the shear flows of the Boussinesq system in a domain T×R. We prove the nonlinear stability of the shear flow (US,ΘS)=((eνt∂yyU(y),0)⊤,αy) with U(y) close to y and α ≥ 0 in Sobolev spaces for the following two cases: (i) α ≥ 0 is small scaling wi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2022-08, Vol.63 (8)
Main Authors: Bian, Dongfen, Pu, Xueke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c257t-9a8fc2f58c255da7ec49ef5849c550bcaeb39e03daf9d2ee4adaeee5f828bf673
cites cdi_FETCH-LOGICAL-c257t-9a8fc2f58c255da7ec49ef5849c550bcaeb39e03daf9d2ee4adaeee5f828bf673
container_end_page
container_issue 8
container_start_page
container_title Journal of mathematical physics
container_volume 63
creator Bian, Dongfen
Pu, Xueke
description In this paper, we consider the nonlinear stability for the shear flows of the Boussinesq system in a domain T×R. We prove the nonlinear stability of the shear flow (US,ΘS)=((eνt∂yyU(y),0)⊤,αy) with U(y) close to y and α ≥ 0 in Sobolev spaces for the following two cases: (i) α ≥ 0 is small scaling with the viscosity coefficients and initial perturbation ≲min{ν,μ}1/2 and (ii) α > 0 is not small, the heat diffusion coefficient μ is fixed, and initial perturbation ≲ν1/2.
doi_str_mv 10.1063/5.0091052
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2702616021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2702616021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-9a8fc2f58c255da7ec49ef5849c550bcaeb39e03daf9d2ee4adaeee5f828bf673</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFKzVg_9gwZNCdHaTTTZHrZ9Q8KCel00yS1PSbruzUfrvTWnRg-BpeJmHd2AYOxdwLSBPb9Q1QClAyQM2EqDLpMiVPmQjACkTmWl9zE6I5gBC6CwbselbtFXbtXHD4ywgzXzXcOcDl_ecZmgDd53_Iu7dsEd-53uidom05rShiAu-3JqJ7zFGPGVHznaEZ_s5Zh-PD--T52T6-vQyuZ0mtVRFTEqrXS2d0kNUjS2wzkocYlbWSkFVW6zSEiFtrCsbiZjZxiKiclrqyuVFOmYXu95V8OseKZq578NyOGlkATIXOUgxqMudqoMnCujMKrQLGzZGgNk-yyizf9Zgr3aW6jba2PrlD_704ReaVeP-w3-bvwFgPnjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2702616021</pqid></control><display><type>article</type><title>Stability threshold for 2D shear flows of the Boussinesq system near Couette</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Bian, Dongfen ; Pu, Xueke</creator><creatorcontrib>Bian, Dongfen ; Pu, Xueke</creatorcontrib><description>In this paper, we consider the nonlinear stability for the shear flows of the Boussinesq system in a domain T×R. We prove the nonlinear stability of the shear flow (US,ΘS)=((eνt∂yyU(y),0)⊤,αy) with U(y) close to y and α ≥ 0 in Sobolev spaces for the following two cases: (i) α ≥ 0 is small scaling with the viscosity coefficients and initial perturbation ≲min{ν,μ}1/2 and (ii) α &gt; 0 is not small, the heat diffusion coefficient μ is fixed, and initial perturbation ≲ν1/2.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0091052</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Boussinesq equations ; Diffusion coefficient ; Flow stability ; Perturbation ; Physics ; Shear flow ; Sobolev space ; Two dimensional flow</subject><ispartof>Journal of mathematical physics, 2022-08, Vol.63 (8)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-9a8fc2f58c255da7ec49ef5849c550bcaeb39e03daf9d2ee4adaeee5f828bf673</citedby><cites>FETCH-LOGICAL-c257t-9a8fc2f58c255da7ec49ef5849c550bcaeb39e03daf9d2ee4adaeee5f828bf673</cites><orcidid>0000-0002-2747-8560 ; 0000-0001-9144-2792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0091052$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Bian, Dongfen</creatorcontrib><creatorcontrib>Pu, Xueke</creatorcontrib><title>Stability threshold for 2D shear flows of the Boussinesq system near Couette</title><title>Journal of mathematical physics</title><description>In this paper, we consider the nonlinear stability for the shear flows of the Boussinesq system in a domain T×R. We prove the nonlinear stability of the shear flow (US,ΘS)=((eνt∂yyU(y),0)⊤,αy) with U(y) close to y and α ≥ 0 in Sobolev spaces for the following two cases: (i) α ≥ 0 is small scaling with the viscosity coefficients and initial perturbation ≲min{ν,μ}1/2 and (ii) α &gt; 0 is not small, the heat diffusion coefficient μ is fixed, and initial perturbation ≲ν1/2.</description><subject>Boussinesq equations</subject><subject>Diffusion coefficient</subject><subject>Flow stability</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Shear flow</subject><subject>Sobolev space</subject><subject>Two dimensional flow</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1Lw0AQBuBFFKzVg_9gwZNCdHaTTTZHrZ9Q8KCel00yS1PSbruzUfrvTWnRg-BpeJmHd2AYOxdwLSBPb9Q1QClAyQM2EqDLpMiVPmQjACkTmWl9zE6I5gBC6CwbselbtFXbtXHD4ywgzXzXcOcDl_ecZmgDd53_Iu7dsEd-53uidom05rShiAu-3JqJ7zFGPGVHznaEZ_s5Zh-PD--T52T6-vQyuZ0mtVRFTEqrXS2d0kNUjS2wzkocYlbWSkFVW6zSEiFtrCsbiZjZxiKiclrqyuVFOmYXu95V8OseKZq578NyOGlkATIXOUgxqMudqoMnCujMKrQLGzZGgNk-yyizf9Zgr3aW6jba2PrlD_704ReaVeP-w3-bvwFgPnjY</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Bian, Dongfen</creator><creator>Pu, Xueke</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2747-8560</orcidid><orcidid>https://orcid.org/0000-0001-9144-2792</orcidid></search><sort><creationdate>20220801</creationdate><title>Stability threshold for 2D shear flows of the Boussinesq system near Couette</title><author>Bian, Dongfen ; Pu, Xueke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-9a8fc2f58c255da7ec49ef5849c550bcaeb39e03daf9d2ee4adaeee5f828bf673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boussinesq equations</topic><topic>Diffusion coefficient</topic><topic>Flow stability</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Shear flow</topic><topic>Sobolev space</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bian, Dongfen</creatorcontrib><creatorcontrib>Pu, Xueke</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bian, Dongfen</au><au>Pu, Xueke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability threshold for 2D shear flows of the Boussinesq system near Couette</atitle><jtitle>Journal of mathematical physics</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>63</volume><issue>8</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>In this paper, we consider the nonlinear stability for the shear flows of the Boussinesq system in a domain T×R. We prove the nonlinear stability of the shear flow (US,ΘS)=((eνt∂yyU(y),0)⊤,αy) with U(y) close to y and α ≥ 0 in Sobolev spaces for the following two cases: (i) α ≥ 0 is small scaling with the viscosity coefficients and initial perturbation ≲min{ν,μ}1/2 and (ii) α &gt; 0 is not small, the heat diffusion coefficient μ is fixed, and initial perturbation ≲ν1/2.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0091052</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2747-8560</orcidid><orcidid>https://orcid.org/0000-0001-9144-2792</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2022-08, Vol.63 (8)
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_journals_2702616021
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Boussinesq equations
Diffusion coefficient
Flow stability
Perturbation
Physics
Shear flow
Sobolev space
Two dimensional flow
title Stability threshold for 2D shear flows of the Boussinesq system near Couette
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20threshold%20for%202D%20shear%20flows%20of%20the%20Boussinesq%20system%20near%20Couette&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Bian,%20Dongfen&rft.date=2022-08-01&rft.volume=63&rft.issue=8&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0091052&rft_dat=%3Cproquest_scita%3E2702616021%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-9a8fc2f58c255da7ec49ef5849c550bcaeb39e03daf9d2ee4adaeee5f828bf673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2702616021&rft_id=info:pmid/&rfr_iscdi=true