Loading…
Stability threshold for 2D shear flows of the Boussinesq system near Couette
In this paper, we consider the nonlinear stability for the shear flows of the Boussinesq system in a domain T×R. We prove the nonlinear stability of the shear flow (US,ΘS)=((eνt∂yyU(y),0)⊤,αy) with U(y) close to y and α ≥ 0 in Sobolev spaces for the following two cases: (i) α ≥ 0 is small scaling wi...
Saved in:
Published in: | Journal of mathematical physics 2022-08, Vol.63 (8) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c257t-9a8fc2f58c255da7ec49ef5849c550bcaeb39e03daf9d2ee4adaeee5f828bf673 |
---|---|
cites | cdi_FETCH-LOGICAL-c257t-9a8fc2f58c255da7ec49ef5849c550bcaeb39e03daf9d2ee4adaeee5f828bf673 |
container_end_page | |
container_issue | 8 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 63 |
creator | Bian, Dongfen Pu, Xueke |
description | In this paper, we consider the nonlinear stability for the shear flows of the Boussinesq system in a domain T×R. We prove the nonlinear stability of the shear flow (US,ΘS)=((eνt∂yyU(y),0)⊤,αy) with U(y) close to y and α ≥ 0 in Sobolev spaces for the following two cases: (i) α ≥ 0 is small scaling with the viscosity coefficients and initial perturbation ≲min{ν,μ}1/2 and (ii) α > 0 is not small, the heat diffusion coefficient μ is fixed, and initial perturbation ≲ν1/2. |
doi_str_mv | 10.1063/5.0091052 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2702616021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2702616021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-9a8fc2f58c255da7ec49ef5849c550bcaeb39e03daf9d2ee4adaeee5f828bf673</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFKzVg_9gwZNCdHaTTTZHrZ9Q8KCel00yS1PSbruzUfrvTWnRg-BpeJmHd2AYOxdwLSBPb9Q1QClAyQM2EqDLpMiVPmQjACkTmWl9zE6I5gBC6CwbselbtFXbtXHD4ywgzXzXcOcDl_ecZmgDd53_Iu7dsEd-53uidom05rShiAu-3JqJ7zFGPGVHznaEZ_s5Zh-PD--T52T6-vQyuZ0mtVRFTEqrXS2d0kNUjS2wzkocYlbWSkFVW6zSEiFtrCsbiZjZxiKiclrqyuVFOmYXu95V8OseKZq578NyOGlkATIXOUgxqMudqoMnCujMKrQLGzZGgNk-yyizf9Zgr3aW6jba2PrlD_704ReaVeP-w3-bvwFgPnjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2702616021</pqid></control><display><type>article</type><title>Stability threshold for 2D shear flows of the Boussinesq system near Couette</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Bian, Dongfen ; Pu, Xueke</creator><creatorcontrib>Bian, Dongfen ; Pu, Xueke</creatorcontrib><description>In this paper, we consider the nonlinear stability for the shear flows of the Boussinesq system in a domain T×R. We prove the nonlinear stability of the shear flow (US,ΘS)=((eνt∂yyU(y),0)⊤,αy) with U(y) close to y and α ≥ 0 in Sobolev spaces for the following two cases: (i) α ≥ 0 is small scaling with the viscosity coefficients and initial perturbation ≲min{ν,μ}1/2 and (ii) α > 0 is not small, the heat diffusion coefficient μ is fixed, and initial perturbation ≲ν1/2.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0091052</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Boussinesq equations ; Diffusion coefficient ; Flow stability ; Perturbation ; Physics ; Shear flow ; Sobolev space ; Two dimensional flow</subject><ispartof>Journal of mathematical physics, 2022-08, Vol.63 (8)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-9a8fc2f58c255da7ec49ef5849c550bcaeb39e03daf9d2ee4adaeee5f828bf673</citedby><cites>FETCH-LOGICAL-c257t-9a8fc2f58c255da7ec49ef5849c550bcaeb39e03daf9d2ee4adaeee5f828bf673</cites><orcidid>0000-0002-2747-8560 ; 0000-0001-9144-2792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0091052$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Bian, Dongfen</creatorcontrib><creatorcontrib>Pu, Xueke</creatorcontrib><title>Stability threshold for 2D shear flows of the Boussinesq system near Couette</title><title>Journal of mathematical physics</title><description>In this paper, we consider the nonlinear stability for the shear flows of the Boussinesq system in a domain T×R. We prove the nonlinear stability of the shear flow (US,ΘS)=((eνt∂yyU(y),0)⊤,αy) with U(y) close to y and α ≥ 0 in Sobolev spaces for the following two cases: (i) α ≥ 0 is small scaling with the viscosity coefficients and initial perturbation ≲min{ν,μ}1/2 and (ii) α > 0 is not small, the heat diffusion coefficient μ is fixed, and initial perturbation ≲ν1/2.</description><subject>Boussinesq equations</subject><subject>Diffusion coefficient</subject><subject>Flow stability</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Shear flow</subject><subject>Sobolev space</subject><subject>Two dimensional flow</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1Lw0AQBuBFFKzVg_9gwZNCdHaTTTZHrZ9Q8KCel00yS1PSbruzUfrvTWnRg-BpeJmHd2AYOxdwLSBPb9Q1QClAyQM2EqDLpMiVPmQjACkTmWl9zE6I5gBC6CwbselbtFXbtXHD4ywgzXzXcOcDl_ecZmgDd53_Iu7dsEd-53uidom05rShiAu-3JqJ7zFGPGVHznaEZ_s5Zh-PD--T52T6-vQyuZ0mtVRFTEqrXS2d0kNUjS2wzkocYlbWSkFVW6zSEiFtrCsbiZjZxiKiclrqyuVFOmYXu95V8OseKZq578NyOGlkATIXOUgxqMudqoMnCujMKrQLGzZGgNk-yyizf9Zgr3aW6jba2PrlD_704ReaVeP-w3-bvwFgPnjY</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Bian, Dongfen</creator><creator>Pu, Xueke</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2747-8560</orcidid><orcidid>https://orcid.org/0000-0001-9144-2792</orcidid></search><sort><creationdate>20220801</creationdate><title>Stability threshold for 2D shear flows of the Boussinesq system near Couette</title><author>Bian, Dongfen ; Pu, Xueke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-9a8fc2f58c255da7ec49ef5849c550bcaeb39e03daf9d2ee4adaeee5f828bf673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boussinesq equations</topic><topic>Diffusion coefficient</topic><topic>Flow stability</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Shear flow</topic><topic>Sobolev space</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bian, Dongfen</creatorcontrib><creatorcontrib>Pu, Xueke</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bian, Dongfen</au><au>Pu, Xueke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability threshold for 2D shear flows of the Boussinesq system near Couette</atitle><jtitle>Journal of mathematical physics</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>63</volume><issue>8</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>In this paper, we consider the nonlinear stability for the shear flows of the Boussinesq system in a domain T×R. We prove the nonlinear stability of the shear flow (US,ΘS)=((eνt∂yyU(y),0)⊤,αy) with U(y) close to y and α ≥ 0 in Sobolev spaces for the following two cases: (i) α ≥ 0 is small scaling with the viscosity coefficients and initial perturbation ≲min{ν,μ}1/2 and (ii) α > 0 is not small, the heat diffusion coefficient μ is fixed, and initial perturbation ≲ν1/2.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0091052</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2747-8560</orcidid><orcidid>https://orcid.org/0000-0001-9144-2792</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2022-08, Vol.63 (8) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_proquest_journals_2702616021 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Boussinesq equations Diffusion coefficient Flow stability Perturbation Physics Shear flow Sobolev space Two dimensional flow |
title | Stability threshold for 2D shear flows of the Boussinesq system near Couette |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20threshold%20for%202D%20shear%20flows%20of%20the%20Boussinesq%20system%20near%20Couette&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Bian,%20Dongfen&rft.date=2022-08-01&rft.volume=63&rft.issue=8&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0091052&rft_dat=%3Cproquest_scita%3E2702616021%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-9a8fc2f58c255da7ec49ef5849c550bcaeb39e03daf9d2ee4adaeee5f828bf673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2702616021&rft_id=info:pmid/&rfr_iscdi=true |