Loading…
A new study of the \(N=32\) and \(N=34\) shell gap for Ti and V by the first high-precision MRTOF mass measurements at BigRIPS-SLOWRI
The atomic masses of \(^{55}\)Sc, \(^{56,58}\)Ti, and \(^{56-59}\)V have been determined using the high-precision multi-reflection time-of-flight technique. The radioisotopes have been produced at RIKEN's RIBF facility and delivered to the novel designed gas cell and multi-reflection system (ZD...
Saved in:
Published in: | arXiv.org 2022-11 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Iimura, S Rosenbusch, M Takamine, A Tsunoda, Y Wada, M Chen, S Hou, D S Xian, W Ishiyama, H Yan, S Schury, P Crawford, H Doornenbal, P Hirayama, Y Ito, Y Kimura, S Koiwai, T Kojima, T M Koura, H Lee, J Liu, J Michimasa, S Miyatake, H Moon, J Y Nishimura, S Naimi, S Niwase, T Odahara, A Otsuka, T Paschalis, S Petri, M Shimizu, N Sonoda, T Suzuki, D Watanabe, Y X Wimmer, K Wollnik, H |
description | The atomic masses of \(^{55}\)Sc, \(^{56,58}\)Ti, and \(^{56-59}\)V have been determined using the high-precision multi-reflection time-of-flight technique. The radioisotopes have been produced at RIKEN's RIBF facility and delivered to the novel designed gas cell and multi-reflection system (ZD MRTOF), which has been recently commissioned downstream of the ZeroDegree spectrometer following the BigRIPS separator. For \(^{56,58}\)Ti and \(^{56-59}\)V the mass uncertainties have been reduced down to the order of \(10\,\mathrm{keV}\), shedding new light on the \(N=34\) shell effect in Ti and V isotopes by the first high-precision mass measurements of the critical species \(^{58}\)Ti and \(^{59}\)V. With the new precision achieved, we reveal the non-existence of the \(N=34\) empirical two-neutron shell gaps for Ti and V, and the enhanced energy gap above the occupied \(\nu p_{3/2}\) orbit is identified as a feature unique to Ca. We perform new Monte Carlo shell model calculations including the \(\nu d_{5/2}\) and \(\nu g_{9/2}\) orbits and compare the results with conventional shell model calculations, which exclude the \(\nu g_{9/2}\) and the \(\nu d_{5/2}\) orbits. The comparison indicates that the shell gap reduction in Ti is related to a partial occupation of the higher orbitals for the outer two valence neutrons at \(N=34\). |
doi_str_mv | 10.48550/arxiv.2208.06621 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2702673793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2702673793</sourcerecordid><originalsourceid>FETCH-proquest_journals_27026737933</originalsourceid><addsrcrecordid>eNqNjs1Kw0AUhQdBsGgfwN0FN7pInNzJnwsXKpYWrJU06KZQRjtJpiSTOnei9gF8b9PqA7g6fJwfDmOnAffDNIr4pbRf-sNH5KnP4xiDAzZAIQIvDRGP2JBozTnHOMEoEgP2fQNGfQK5brWFtgBXKVicP14LXFyANKtfCHugStU1lHIDRWsh13v3GV63-06hLTmodFl5G6veNOnWwDTLZyNoJBE0SlJnVaOMI5AObnWZTZ7m3vxh9pJNTthhIWtSwz89Zmej-_xu3G-1750it1y3nTW9tcRkd14kV0L8L_UD2yRTlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2702673793</pqid></control><display><type>article</type><title>A new study of the \(N=32\) and \(N=34\) shell gap for Ti and V by the first high-precision MRTOF mass measurements at BigRIPS-SLOWRI</title><source>Publicly Available Content (ProQuest)</source><creator>Iimura, S ; Rosenbusch, M ; Takamine, A ; Tsunoda, Y ; Wada, M ; Chen, S ; Hou, D S ; Xian, W ; Ishiyama, H ; Yan, S ; Schury, P ; Crawford, H ; Doornenbal, P ; Hirayama, Y ; Ito, Y ; Kimura, S ; Koiwai, T ; Kojima, T M ; Koura, H ; Lee, J ; Liu, J ; Michimasa, S ; Miyatake, H ; Moon, J Y ; Nishimura, S ; Naimi, S ; Niwase, T ; Odahara, A ; Otsuka, T ; Paschalis, S ; Petri, M ; Shimizu, N ; Sonoda, T ; Suzuki, D ; Watanabe, Y X ; Wimmer, K ; Wollnik, H</creator><creatorcontrib>Iimura, S ; Rosenbusch, M ; Takamine, A ; Tsunoda, Y ; Wada, M ; Chen, S ; Hou, D S ; Xian, W ; Ishiyama, H ; Yan, S ; Schury, P ; Crawford, H ; Doornenbal, P ; Hirayama, Y ; Ito, Y ; Kimura, S ; Koiwai, T ; Kojima, T M ; Koura, H ; Lee, J ; Liu, J ; Michimasa, S ; Miyatake, H ; Moon, J Y ; Nishimura, S ; Naimi, S ; Niwase, T ; Odahara, A ; Otsuka, T ; Paschalis, S ; Petri, M ; Shimizu, N ; Sonoda, T ; Suzuki, D ; Watanabe, Y X ; Wimmer, K ; Wollnik, H</creatorcontrib><description>The atomic masses of \(^{55}\)Sc, \(^{56,58}\)Ti, and \(^{56-59}\)V have been determined using the high-precision multi-reflection time-of-flight technique. The radioisotopes have been produced at RIKEN's RIBF facility and delivered to the novel designed gas cell and multi-reflection system (ZD MRTOF), which has been recently commissioned downstream of the ZeroDegree spectrometer following the BigRIPS separator. For \(^{56,58}\)Ti and \(^{56-59}\)V the mass uncertainties have been reduced down to the order of \(10\,\mathrm{keV}\), shedding new light on the \(N=34\) shell effect in Ti and V isotopes by the first high-precision mass measurements of the critical species \(^{58}\)Ti and \(^{59}\)V. With the new precision achieved, we reveal the non-existence of the \(N=34\) empirical two-neutron shell gaps for Ti and V, and the enhanced energy gap above the occupied \(\nu p_{3/2}\) orbit is identified as a feature unique to Ca. We perform new Monte Carlo shell model calculations including the \(\nu d_{5/2}\) and \(\nu g_{9/2}\) orbits and compare the results with conventional shell model calculations, which exclude the \(\nu g_{9/2}\) and the \(\nu d_{5/2}\) orbits. The comparison indicates that the shell gap reduction in Ti is related to a partial occupation of the higher orbitals for the outer two valence neutrons at \(N=34\).</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2208.06621</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Atomic properties ; Energy gap ; Mathematical models ; Orbits ; Radioisotopes ; Reflection ; Separators ; Titanium ; Vanadium</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2702673793?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Iimura, S</creatorcontrib><creatorcontrib>Rosenbusch, M</creatorcontrib><creatorcontrib>Takamine, A</creatorcontrib><creatorcontrib>Tsunoda, Y</creatorcontrib><creatorcontrib>Wada, M</creatorcontrib><creatorcontrib>Chen, S</creatorcontrib><creatorcontrib>Hou, D S</creatorcontrib><creatorcontrib>Xian, W</creatorcontrib><creatorcontrib>Ishiyama, H</creatorcontrib><creatorcontrib>Yan, S</creatorcontrib><creatorcontrib>Schury, P</creatorcontrib><creatorcontrib>Crawford, H</creatorcontrib><creatorcontrib>Doornenbal, P</creatorcontrib><creatorcontrib>Hirayama, Y</creatorcontrib><creatorcontrib>Ito, Y</creatorcontrib><creatorcontrib>Kimura, S</creatorcontrib><creatorcontrib>Koiwai, T</creatorcontrib><creatorcontrib>Kojima, T M</creatorcontrib><creatorcontrib>Koura, H</creatorcontrib><creatorcontrib>Lee, J</creatorcontrib><creatorcontrib>Liu, J</creatorcontrib><creatorcontrib>Michimasa, S</creatorcontrib><creatorcontrib>Miyatake, H</creatorcontrib><creatorcontrib>Moon, J Y</creatorcontrib><creatorcontrib>Nishimura, S</creatorcontrib><creatorcontrib>Naimi, S</creatorcontrib><creatorcontrib>Niwase, T</creatorcontrib><creatorcontrib>Odahara, A</creatorcontrib><creatorcontrib>Otsuka, T</creatorcontrib><creatorcontrib>Paschalis, S</creatorcontrib><creatorcontrib>Petri, M</creatorcontrib><creatorcontrib>Shimizu, N</creatorcontrib><creatorcontrib>Sonoda, T</creatorcontrib><creatorcontrib>Suzuki, D</creatorcontrib><creatorcontrib>Watanabe, Y X</creatorcontrib><creatorcontrib>Wimmer, K</creatorcontrib><creatorcontrib>Wollnik, H</creatorcontrib><title>A new study of the \(N=32\) and \(N=34\) shell gap for Ti and V by the first high-precision MRTOF mass measurements at BigRIPS-SLOWRI</title><title>arXiv.org</title><description>The atomic masses of \(^{55}\)Sc, \(^{56,58}\)Ti, and \(^{56-59}\)V have been determined using the high-precision multi-reflection time-of-flight technique. The radioisotopes have been produced at RIKEN's RIBF facility and delivered to the novel designed gas cell and multi-reflection system (ZD MRTOF), which has been recently commissioned downstream of the ZeroDegree spectrometer following the BigRIPS separator. For \(^{56,58}\)Ti and \(^{56-59}\)V the mass uncertainties have been reduced down to the order of \(10\,\mathrm{keV}\), shedding new light on the \(N=34\) shell effect in Ti and V isotopes by the first high-precision mass measurements of the critical species \(^{58}\)Ti and \(^{59}\)V. With the new precision achieved, we reveal the non-existence of the \(N=34\) empirical two-neutron shell gaps for Ti and V, and the enhanced energy gap above the occupied \(\nu p_{3/2}\) orbit is identified as a feature unique to Ca. We perform new Monte Carlo shell model calculations including the \(\nu d_{5/2}\) and \(\nu g_{9/2}\) orbits and compare the results with conventional shell model calculations, which exclude the \(\nu g_{9/2}\) and the \(\nu d_{5/2}\) orbits. The comparison indicates that the shell gap reduction in Ti is related to a partial occupation of the higher orbitals for the outer two valence neutrons at \(N=34\).</description><subject>Atomic properties</subject><subject>Energy gap</subject><subject>Mathematical models</subject><subject>Orbits</subject><subject>Radioisotopes</subject><subject>Reflection</subject><subject>Separators</subject><subject>Titanium</subject><subject>Vanadium</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjs1Kw0AUhQdBsGgfwN0FN7pInNzJnwsXKpYWrJU06KZQRjtJpiSTOnei9gF8b9PqA7g6fJwfDmOnAffDNIr4pbRf-sNH5KnP4xiDAzZAIQIvDRGP2JBozTnHOMEoEgP2fQNGfQK5brWFtgBXKVicP14LXFyANKtfCHugStU1lHIDRWsh13v3GV63-06hLTmodFl5G6veNOnWwDTLZyNoJBE0SlJnVaOMI5AObnWZTZ7m3vxh9pJNTthhIWtSwz89Zmej-_xu3G-1750it1y3nTW9tcRkd14kV0L8L_UD2yRTlg</recordid><startdate>20221108</startdate><enddate>20221108</enddate><creator>Iimura, S</creator><creator>Rosenbusch, M</creator><creator>Takamine, A</creator><creator>Tsunoda, Y</creator><creator>Wada, M</creator><creator>Chen, S</creator><creator>Hou, D S</creator><creator>Xian, W</creator><creator>Ishiyama, H</creator><creator>Yan, S</creator><creator>Schury, P</creator><creator>Crawford, H</creator><creator>Doornenbal, P</creator><creator>Hirayama, Y</creator><creator>Ito, Y</creator><creator>Kimura, S</creator><creator>Koiwai, T</creator><creator>Kojima, T M</creator><creator>Koura, H</creator><creator>Lee, J</creator><creator>Liu, J</creator><creator>Michimasa, S</creator><creator>Miyatake, H</creator><creator>Moon, J Y</creator><creator>Nishimura, S</creator><creator>Naimi, S</creator><creator>Niwase, T</creator><creator>Odahara, A</creator><creator>Otsuka, T</creator><creator>Paschalis, S</creator><creator>Petri, M</creator><creator>Shimizu, N</creator><creator>Sonoda, T</creator><creator>Suzuki, D</creator><creator>Watanabe, Y X</creator><creator>Wimmer, K</creator><creator>Wollnik, H</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221108</creationdate><title>A new study of the \(N=32\) and \(N=34\) shell gap for Ti and V by the first high-precision MRTOF mass measurements at BigRIPS-SLOWRI</title><author>Iimura, S ; Rosenbusch, M ; Takamine, A ; Tsunoda, Y ; Wada, M ; Chen, S ; Hou, D S ; Xian, W ; Ishiyama, H ; Yan, S ; Schury, P ; Crawford, H ; Doornenbal, P ; Hirayama, Y ; Ito, Y ; Kimura, S ; Koiwai, T ; Kojima, T M ; Koura, H ; Lee, J ; Liu, J ; Michimasa, S ; Miyatake, H ; Moon, J Y ; Nishimura, S ; Naimi, S ; Niwase, T ; Odahara, A ; Otsuka, T ; Paschalis, S ; Petri, M ; Shimizu, N ; Sonoda, T ; Suzuki, D ; Watanabe, Y X ; Wimmer, K ; Wollnik, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27026737933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic properties</topic><topic>Energy gap</topic><topic>Mathematical models</topic><topic>Orbits</topic><topic>Radioisotopes</topic><topic>Reflection</topic><topic>Separators</topic><topic>Titanium</topic><topic>Vanadium</topic><toplevel>online_resources</toplevel><creatorcontrib>Iimura, S</creatorcontrib><creatorcontrib>Rosenbusch, M</creatorcontrib><creatorcontrib>Takamine, A</creatorcontrib><creatorcontrib>Tsunoda, Y</creatorcontrib><creatorcontrib>Wada, M</creatorcontrib><creatorcontrib>Chen, S</creatorcontrib><creatorcontrib>Hou, D S</creatorcontrib><creatorcontrib>Xian, W</creatorcontrib><creatorcontrib>Ishiyama, H</creatorcontrib><creatorcontrib>Yan, S</creatorcontrib><creatorcontrib>Schury, P</creatorcontrib><creatorcontrib>Crawford, H</creatorcontrib><creatorcontrib>Doornenbal, P</creatorcontrib><creatorcontrib>Hirayama, Y</creatorcontrib><creatorcontrib>Ito, Y</creatorcontrib><creatorcontrib>Kimura, S</creatorcontrib><creatorcontrib>Koiwai, T</creatorcontrib><creatorcontrib>Kojima, T M</creatorcontrib><creatorcontrib>Koura, H</creatorcontrib><creatorcontrib>Lee, J</creatorcontrib><creatorcontrib>Liu, J</creatorcontrib><creatorcontrib>Michimasa, S</creatorcontrib><creatorcontrib>Miyatake, H</creatorcontrib><creatorcontrib>Moon, J Y</creatorcontrib><creatorcontrib>Nishimura, S</creatorcontrib><creatorcontrib>Naimi, S</creatorcontrib><creatorcontrib>Niwase, T</creatorcontrib><creatorcontrib>Odahara, A</creatorcontrib><creatorcontrib>Otsuka, T</creatorcontrib><creatorcontrib>Paschalis, S</creatorcontrib><creatorcontrib>Petri, M</creatorcontrib><creatorcontrib>Shimizu, N</creatorcontrib><creatorcontrib>Sonoda, T</creatorcontrib><creatorcontrib>Suzuki, D</creatorcontrib><creatorcontrib>Watanabe, Y X</creatorcontrib><creatorcontrib>Wimmer, K</creatorcontrib><creatorcontrib>Wollnik, H</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iimura, S</au><au>Rosenbusch, M</au><au>Takamine, A</au><au>Tsunoda, Y</au><au>Wada, M</au><au>Chen, S</au><au>Hou, D S</au><au>Xian, W</au><au>Ishiyama, H</au><au>Yan, S</au><au>Schury, P</au><au>Crawford, H</au><au>Doornenbal, P</au><au>Hirayama, Y</au><au>Ito, Y</au><au>Kimura, S</au><au>Koiwai, T</au><au>Kojima, T M</au><au>Koura, H</au><au>Lee, J</au><au>Liu, J</au><au>Michimasa, S</au><au>Miyatake, H</au><au>Moon, J Y</au><au>Nishimura, S</au><au>Naimi, S</au><au>Niwase, T</au><au>Odahara, A</au><au>Otsuka, T</au><au>Paschalis, S</au><au>Petri, M</au><au>Shimizu, N</au><au>Sonoda, T</au><au>Suzuki, D</au><au>Watanabe, Y X</au><au>Wimmer, K</au><au>Wollnik, H</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A new study of the \(N=32\) and \(N=34\) shell gap for Ti and V by the first high-precision MRTOF mass measurements at BigRIPS-SLOWRI</atitle><jtitle>arXiv.org</jtitle><date>2022-11-08</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The atomic masses of \(^{55}\)Sc, \(^{56,58}\)Ti, and \(^{56-59}\)V have been determined using the high-precision multi-reflection time-of-flight technique. The radioisotopes have been produced at RIKEN's RIBF facility and delivered to the novel designed gas cell and multi-reflection system (ZD MRTOF), which has been recently commissioned downstream of the ZeroDegree spectrometer following the BigRIPS separator. For \(^{56,58}\)Ti and \(^{56-59}\)V the mass uncertainties have been reduced down to the order of \(10\,\mathrm{keV}\), shedding new light on the \(N=34\) shell effect in Ti and V isotopes by the first high-precision mass measurements of the critical species \(^{58}\)Ti and \(^{59}\)V. With the new precision achieved, we reveal the non-existence of the \(N=34\) empirical two-neutron shell gaps for Ti and V, and the enhanced energy gap above the occupied \(\nu p_{3/2}\) orbit is identified as a feature unique to Ca. We perform new Monte Carlo shell model calculations including the \(\nu d_{5/2}\) and \(\nu g_{9/2}\) orbits and compare the results with conventional shell model calculations, which exclude the \(\nu g_{9/2}\) and the \(\nu d_{5/2}\) orbits. The comparison indicates that the shell gap reduction in Ti is related to a partial occupation of the higher orbitals for the outer two valence neutrons at \(N=34\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2208.06621</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2702673793 |
source | Publicly Available Content (ProQuest) |
subjects | Atomic properties Energy gap Mathematical models Orbits Radioisotopes Reflection Separators Titanium Vanadium |
title | A new study of the \(N=32\) and \(N=34\) shell gap for Ti and V by the first high-precision MRTOF mass measurements at BigRIPS-SLOWRI |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20new%20study%20of%20the%20%5C(N=32%5C)%20and%20%5C(N=34%5C)%20shell%20gap%20for%20Ti%20and%20V%20by%20the%20first%20high-precision%20MRTOF%20mass%20measurements%20at%20BigRIPS-SLOWRI&rft.jtitle=arXiv.org&rft.au=Iimura,%20S&rft.date=2022-11-08&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2208.06621&rft_dat=%3Cproquest%3E2702673793%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27026737933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2702673793&rft_id=info:pmid/&rfr_iscdi=true |