Loading…
Virial theorem for a cloud of stars obtained from Jeans equations with the second correlation moments
A hydrodynamic model for small acoustic oscillations in a cloud of stars is built, taking into account the self-consistent gravitational field in equilibrium with a non-zero second correlation moment. It is assumed that the momentum flux density tensor should include the analog of the anisotropic pr...
Saved in:
Published in: | arXiv.org 2023-06 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Stupka A A Kopteva, E M Saliuk, M A Bormotova, I M |
description | A hydrodynamic model for small acoustic oscillations in a cloud of stars is built, taking into account the self-consistent gravitational field in equilibrium with a non-zero second correlation moment. It is assumed that the momentum flux density tensor should include the analog of the anisotropic pressure tensor and the second correlation moment of both longitudinal and transverse gravitational field strength. The non-relativistic temporal equation for the second correlation moment of the gravitational field strength is derived from the Einstein equations using the first-order post-Newtonian approximation. One longitudinal and two transverse branches of acoustic oscillations are found in a homogeneous and isotropic star cloud. The requirement for the velocity of transverse oscillations to be zero provides the boundary condition for the stability of the cloud. The critical radius of the spherical cloud of stars is obtained, which is precisely consistent with the virial theorem. |
doi_str_mv | 10.48550/arxiv.2208.07695 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2703184487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2703184487</sourcerecordid><originalsourceid>FETCH-LOGICAL-a955-cdefabd6d30039ad72722278bfa22b3839b7b2976a656563e8e3cf5a991b4f553</originalsourceid><addsrcrecordid>eNotT01rwzAUM4PBStcfsJth53TOcxw7x1H2SWGXsmt5jp9pShKvtrPt5y_big4SCEmIsZtSrCujlLjD-N19rgGEWQtdN-qCLUDKsjAVwBVbpXQUQkCtQSm5YPTexQ57ng8UIg3ch8iRt32YHA-ep4wx8WAzdiM57mMY-CvhmDidJsxdmNVXlw-_eZ6oDaPjbYiR-j-TD2GgMadrdumxT7Q685LtHh92m-di-_b0srnfFtgoVbSOPFpXOymEbNBp0ACgjfUIYKWRjdUWGl1jrWZIMiRbr7BpSlv5-c6S3f7XfsRwmijl_TFMcZwX96CFLE1VGS1_AFp_WLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703184487</pqid></control><display><type>article</type><title>Virial theorem for a cloud of stars obtained from Jeans equations with the second correlation moments</title><source>Publicly Available Content (ProQuest)</source><creator>Stupka A A ; Kopteva, E M ; Saliuk, M A ; Bormotova, I M</creator><creatorcontrib>Stupka A A ; Kopteva, E M ; Saliuk, M A ; Bormotova, I M</creatorcontrib><description>A hydrodynamic model for small acoustic oscillations in a cloud of stars is built, taking into account the self-consistent gravitational field in equilibrium with a non-zero second correlation moment. It is assumed that the momentum flux density tensor should include the analog of the anisotropic pressure tensor and the second correlation moment of both longitudinal and transverse gravitational field strength. The non-relativistic temporal equation for the second correlation moment of the gravitational field strength is derived from the Einstein equations using the first-order post-Newtonian approximation. One longitudinal and two transverse branches of acoustic oscillations are found in a homogeneous and isotropic star cloud. The requirement for the velocity of transverse oscillations to be zero provides the boundary condition for the stability of the cloud. The critical radius of the spherical cloud of stars is obtained, which is precisely consistent with the virial theorem.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2208.07695</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary conditions ; Clouds ; Correlation ; Einstein equations ; Field strength ; Flux density ; Gravitational fields ; Mathematical analysis ; Tensors ; Transverse oscillation ; Virial theorem</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2703184487?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Stupka A A</creatorcontrib><creatorcontrib>Kopteva, E M</creatorcontrib><creatorcontrib>Saliuk, M A</creatorcontrib><creatorcontrib>Bormotova, I M</creatorcontrib><title>Virial theorem for a cloud of stars obtained from Jeans equations with the second correlation moments</title><title>arXiv.org</title><description>A hydrodynamic model for small acoustic oscillations in a cloud of stars is built, taking into account the self-consistent gravitational field in equilibrium with a non-zero second correlation moment. It is assumed that the momentum flux density tensor should include the analog of the anisotropic pressure tensor and the second correlation moment of both longitudinal and transverse gravitational field strength. The non-relativistic temporal equation for the second correlation moment of the gravitational field strength is derived from the Einstein equations using the first-order post-Newtonian approximation. One longitudinal and two transverse branches of acoustic oscillations are found in a homogeneous and isotropic star cloud. The requirement for the velocity of transverse oscillations to be zero provides the boundary condition for the stability of the cloud. The critical radius of the spherical cloud of stars is obtained, which is precisely consistent with the virial theorem.</description><subject>Boundary conditions</subject><subject>Clouds</subject><subject>Correlation</subject><subject>Einstein equations</subject><subject>Field strength</subject><subject>Flux density</subject><subject>Gravitational fields</subject><subject>Mathematical analysis</subject><subject>Tensors</subject><subject>Transverse oscillation</subject><subject>Virial theorem</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotT01rwzAUM4PBStcfsJth53TOcxw7x1H2SWGXsmt5jp9pShKvtrPt5y_big4SCEmIsZtSrCujlLjD-N19rgGEWQtdN-qCLUDKsjAVwBVbpXQUQkCtQSm5YPTexQ57ng8UIg3ch8iRt32YHA-ep4wx8WAzdiM57mMY-CvhmDidJsxdmNVXlw-_eZ6oDaPjbYiR-j-TD2GgMadrdumxT7Q685LtHh92m-di-_b0srnfFtgoVbSOPFpXOymEbNBp0ACgjfUIYKWRjdUWGl1jrWZIMiRbr7BpSlv5-c6S3f7XfsRwmijl_TFMcZwX96CFLE1VGS1_AFp_WLs</recordid><startdate>20230605</startdate><enddate>20230605</enddate><creator>Stupka A A</creator><creator>Kopteva, E M</creator><creator>Saliuk, M A</creator><creator>Bormotova, I M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230605</creationdate><title>Virial theorem for a cloud of stars obtained from Jeans equations with the second correlation moments</title><author>Stupka A A ; Kopteva, E M ; Saliuk, M A ; Bormotova, I M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a955-cdefabd6d30039ad72722278bfa22b3839b7b2976a656563e8e3cf5a991b4f553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary conditions</topic><topic>Clouds</topic><topic>Correlation</topic><topic>Einstein equations</topic><topic>Field strength</topic><topic>Flux density</topic><topic>Gravitational fields</topic><topic>Mathematical analysis</topic><topic>Tensors</topic><topic>Transverse oscillation</topic><topic>Virial theorem</topic><toplevel>online_resources</toplevel><creatorcontrib>Stupka A A</creatorcontrib><creatorcontrib>Kopteva, E M</creatorcontrib><creatorcontrib>Saliuk, M A</creatorcontrib><creatorcontrib>Bormotova, I M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stupka A A</au><au>Kopteva, E M</au><au>Saliuk, M A</au><au>Bormotova, I M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Virial theorem for a cloud of stars obtained from Jeans equations with the second correlation moments</atitle><jtitle>arXiv.org</jtitle><date>2023-06-05</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>A hydrodynamic model for small acoustic oscillations in a cloud of stars is built, taking into account the self-consistent gravitational field in equilibrium with a non-zero second correlation moment. It is assumed that the momentum flux density tensor should include the analog of the anisotropic pressure tensor and the second correlation moment of both longitudinal and transverse gravitational field strength. The non-relativistic temporal equation for the second correlation moment of the gravitational field strength is derived from the Einstein equations using the first-order post-Newtonian approximation. One longitudinal and two transverse branches of acoustic oscillations are found in a homogeneous and isotropic star cloud. The requirement for the velocity of transverse oscillations to be zero provides the boundary condition for the stability of the cloud. The critical radius of the spherical cloud of stars is obtained, which is precisely consistent with the virial theorem.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2208.07695</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2703184487 |
source | Publicly Available Content (ProQuest) |
subjects | Boundary conditions Clouds Correlation Einstein equations Field strength Flux density Gravitational fields Mathematical analysis Tensors Transverse oscillation Virial theorem |
title | Virial theorem for a cloud of stars obtained from Jeans equations with the second correlation moments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A41%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Virial%20theorem%20for%20a%20cloud%20of%20stars%20obtained%20from%20Jeans%20equations%20with%20the%20second%20correlation%20moments&rft.jtitle=arXiv.org&rft.au=Stupka%20A%20A&rft.date=2023-06-05&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2208.07695&rft_dat=%3Cproquest%3E2703184487%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a955-cdefabd6d30039ad72722278bfa22b3839b7b2976a656563e8e3cf5a991b4f553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2703184487&rft_id=info:pmid/&rfr_iscdi=true |