Loading…

MTL-ABS3Net: Atlas-Based Semi-Supervised Organ Segmentation Network With Multi-Task Learning for Medical Images

Organ segmentation is one of the most important step for various medical image analysis tasks. Recently, semi-supervised learning (SSL) has attracted much attentions by reducing labeling cost. However, most of the existing SSLs neglected the prior shape and position information specialized in the me...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2022-08, Vol.26 (8), p.3988-3998
Main Authors: Huang, Huimin, Chen, Qingqing, Lin, Lanfen, Cai, Ming, Zhang, Qiaowei, Iwamoto, Yutaro, Han, Xianhua, Furukawa, Akira, Kanasaki, Shuzo, Chen, Yen-Wei, Tong, Ruofeng, Hu, Hongjie
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3998
container_issue 8
container_start_page 3988
container_title IEEE journal of biomedical and health informatics
container_volume 26
creator Huang, Huimin
Chen, Qingqing
Lin, Lanfen
Cai, Ming
Zhang, Qiaowei
Iwamoto, Yutaro
Han, Xianhua
Furukawa, Akira
Kanasaki, Shuzo
Chen, Yen-Wei
Tong, Ruofeng
Hu, Hongjie
description Organ segmentation is one of the most important step for various medical image analysis tasks. Recently, semi-supervised learning (SSL) has attracted much attentions by reducing labeling cost. However, most of the existing SSLs neglected the prior shape and position information specialized in the medical images, leading to unsatisfactory localization and non-smooth of objects. In this paper, we propose a novel atlas-based semi-supervised segmentation network with multi-task learning for medical organs, named MTL-ABS 3 Net, which incorporates the anatomical priors and makes full use of unlabeled data in a self-training and multi-task learning manner. The MTL-ABS 3 Net consists of two components: an Atlas-Based Semi-Supervised Segmentation Network (ABS 3 Net) and Reconstruction-Assisted Module (RAM). Specifically, the ABS 3 Net improves the existing SSLs by utilizing atlas prior, which generates credible pseudo labels in a self-training manner; while the RAM further assists the segmentation network by capturing the anatomical structures from the original images in a multi-task learning manner. Better reconstruction quality is achieved by using MS-SSIM loss function, which further improves the segmentation accuracy. Experimental results from the liver and spleen datasets demonstrated that the performance of our method was significantly improved compared to existing state-of-the-art methods.
doi_str_mv 10.1109/JBHI.2022.3153406
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2703423016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9721677</ieee_id><sourcerecordid>2633850245</sourcerecordid><originalsourceid>FETCH-LOGICAL-i189t-33c167b909d809da998624296b0f94876113a191d8effa1f8df0d58dd68d19393</originalsourceid><addsrcrecordid>eNpdkUtLAzEQgIMoKuoPEEECXrxszSS72cRbKz4qrR5a8bikzWyN7qMmu4r_3oiPgwPDvL4ZhhlCDoENAJg-ux3djAeccT4QkImUyQ2yy0GqhHOmNn990OkOOQjhmUVRMaXlNtkRGQchQO-SdjqfJMPRTNxhd06HXWVCMjIBLZ1h7ZJZv0b_5r7ie78yTcyuamw607m2obHnvfUv9NF1T3TaV51L5ia80Aka37hmRcvW0ylatzQVHddmhWGfbJWmCnjwY_fIw9Xl_OImmdxfjy-Gk8SB0l0ixBJkvtBMWxXVaK0kT7mWC1bqVOUSQBjQYBWWpYFS2ZLZTFkrlQUttNgjp99z17597TF0Re3CEqvKNNj2oeBSCJUxnmYRPfmHPre9b-J2Bc-ZSLlgICN1_EP1ixptsfauNv6j-D1lBI6-AYeIf2Wdxz_kufgEyK99EA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703423016</pqid></control><display><type>article</type><title>MTL-ABS3Net: Atlas-Based Semi-Supervised Organ Segmentation Network With Multi-Task Learning for Medical Images</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Huang, Huimin ; Chen, Qingqing ; Lin, Lanfen ; Cai, Ming ; Zhang, Qiaowei ; Iwamoto, Yutaro ; Han, Xianhua ; Furukawa, Akira ; Kanasaki, Shuzo ; Chen, Yen-Wei ; Tong, Ruofeng ; Hu, Hongjie</creator><creatorcontrib>Huang, Huimin ; Chen, Qingqing ; Lin, Lanfen ; Cai, Ming ; Zhang, Qiaowei ; Iwamoto, Yutaro ; Han, Xianhua ; Furukawa, Akira ; Kanasaki, Shuzo ; Chen, Yen-Wei ; Tong, Ruofeng ; Hu, Hongjie</creatorcontrib><description>Organ segmentation is one of the most important step for various medical image analysis tasks. Recently, semi-supervised learning (SSL) has attracted much attentions by reducing labeling cost. However, most of the existing SSLs neglected the prior shape and position information specialized in the medical images, leading to unsatisfactory localization and non-smooth of objects. In this paper, we propose a novel atlas-based semi-supervised segmentation network with multi-task learning for medical organs, named MTL-ABS 3 Net, which incorporates the anatomical priors and makes full use of unlabeled data in a self-training and multi-task learning manner. The MTL-ABS 3 Net consists of two components: an Atlas-Based Semi-Supervised Segmentation Network (ABS 3 Net) and Reconstruction-Assisted Module (RAM). Specifically, the ABS 3 Net improves the existing SSLs by utilizing atlas prior, which generates credible pseudo labels in a self-training manner; while the RAM further assists the segmentation network by capturing the anatomical structures from the original images in a multi-task learning manner. Better reconstruction quality is achieved by using MS-SSIM loss function, which further improves the segmentation accuracy. Experimental results from the liver and spleen datasets demonstrated that the performance of our method was significantly improved compared to existing state-of-the-art methods.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2022.3153406</identifier><identifier>PMID: 35213319</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Anatomical Priors ; Biomedical imaging ; Image analysis ; Image processing ; Image reconstruction ; Image segmentation ; Labels ; Learning ; Localization ; Medical imaging ; Multi-task Learning ; Multitasking ; Organ Segmentation ; Probabilistic logic ; Reconstruction ; Self-training ; Semi-supervised learning ; Semi-supervised Learning (SSL) ; Task analysis ; Training</subject><ispartof>IEEE journal of biomedical and health informatics, 2022-08, Vol.26 (8), p.3988-3998</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6723-8652 ; 0000-0002-5003-3180 ; 0000-0003-2268-1938 ; 0000-0003-4098-588X ; 0000-0002-8167-5354 ; 0000-0001-8987-350X ; 0000-0001-5367-5923 ; 0000-0002-5952-0188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9721677$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35213319$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Huimin</creatorcontrib><creatorcontrib>Chen, Qingqing</creatorcontrib><creatorcontrib>Lin, Lanfen</creatorcontrib><creatorcontrib>Cai, Ming</creatorcontrib><creatorcontrib>Zhang, Qiaowei</creatorcontrib><creatorcontrib>Iwamoto, Yutaro</creatorcontrib><creatorcontrib>Han, Xianhua</creatorcontrib><creatorcontrib>Furukawa, Akira</creatorcontrib><creatorcontrib>Kanasaki, Shuzo</creatorcontrib><creatorcontrib>Chen, Yen-Wei</creatorcontrib><creatorcontrib>Tong, Ruofeng</creatorcontrib><creatorcontrib>Hu, Hongjie</creatorcontrib><title>MTL-ABS3Net: Atlas-Based Semi-Supervised Organ Segmentation Network With Multi-Task Learning for Medical Images</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Organ segmentation is one of the most important step for various medical image analysis tasks. Recently, semi-supervised learning (SSL) has attracted much attentions by reducing labeling cost. However, most of the existing SSLs neglected the prior shape and position information specialized in the medical images, leading to unsatisfactory localization and non-smooth of objects. In this paper, we propose a novel atlas-based semi-supervised segmentation network with multi-task learning for medical organs, named MTL-ABS 3 Net, which incorporates the anatomical priors and makes full use of unlabeled data in a self-training and multi-task learning manner. The MTL-ABS 3 Net consists of two components: an Atlas-Based Semi-Supervised Segmentation Network (ABS 3 Net) and Reconstruction-Assisted Module (RAM). Specifically, the ABS 3 Net improves the existing SSLs by utilizing atlas prior, which generates credible pseudo labels in a self-training manner; while the RAM further assists the segmentation network by capturing the anatomical structures from the original images in a multi-task learning manner. Better reconstruction quality is achieved by using MS-SSIM loss function, which further improves the segmentation accuracy. Experimental results from the liver and spleen datasets demonstrated that the performance of our method was significantly improved compared to existing state-of-the-art methods.</description><subject>Anatomical Priors</subject><subject>Biomedical imaging</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Image segmentation</subject><subject>Labels</subject><subject>Learning</subject><subject>Localization</subject><subject>Medical imaging</subject><subject>Multi-task Learning</subject><subject>Multitasking</subject><subject>Organ Segmentation</subject><subject>Probabilistic logic</subject><subject>Reconstruction</subject><subject>Self-training</subject><subject>Semi-supervised learning</subject><subject>Semi-supervised Learning (SSL)</subject><subject>Task analysis</subject><subject>Training</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkUtLAzEQgIMoKuoPEEECXrxszSS72cRbKz4qrR5a8bikzWyN7qMmu4r_3oiPgwPDvL4ZhhlCDoENAJg-ux3djAeccT4QkImUyQ2yy0GqhHOmNn990OkOOQjhmUVRMaXlNtkRGQchQO-SdjqfJMPRTNxhd06HXWVCMjIBLZ1h7ZJZv0b_5r7ie78yTcyuamw607m2obHnvfUv9NF1T3TaV51L5ia80Aka37hmRcvW0ylatzQVHddmhWGfbJWmCnjwY_fIw9Xl_OImmdxfjy-Gk8SB0l0ixBJkvtBMWxXVaK0kT7mWC1bqVOUSQBjQYBWWpYFS2ZLZTFkrlQUttNgjp99z17597TF0Re3CEqvKNNj2oeBSCJUxnmYRPfmHPre9b-J2Bc-ZSLlgICN1_EP1ixptsfauNv6j-D1lBI6-AYeIf2Wdxz_kufgEyK99EA</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Huang, Huimin</creator><creator>Chen, Qingqing</creator><creator>Lin, Lanfen</creator><creator>Cai, Ming</creator><creator>Zhang, Qiaowei</creator><creator>Iwamoto, Yutaro</creator><creator>Han, Xianhua</creator><creator>Furukawa, Akira</creator><creator>Kanasaki, Shuzo</creator><creator>Chen, Yen-Wei</creator><creator>Tong, Ruofeng</creator><creator>Hu, Hongjie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6723-8652</orcidid><orcidid>https://orcid.org/0000-0002-5003-3180</orcidid><orcidid>https://orcid.org/0000-0003-2268-1938</orcidid><orcidid>https://orcid.org/0000-0003-4098-588X</orcidid><orcidid>https://orcid.org/0000-0002-8167-5354</orcidid><orcidid>https://orcid.org/0000-0001-8987-350X</orcidid><orcidid>https://orcid.org/0000-0001-5367-5923</orcidid><orcidid>https://orcid.org/0000-0002-5952-0188</orcidid></search><sort><creationdate>20220801</creationdate><title>MTL-ABS3Net: Atlas-Based Semi-Supervised Organ Segmentation Network With Multi-Task Learning for Medical Images</title><author>Huang, Huimin ; Chen, Qingqing ; Lin, Lanfen ; Cai, Ming ; Zhang, Qiaowei ; Iwamoto, Yutaro ; Han, Xianhua ; Furukawa, Akira ; Kanasaki, Shuzo ; Chen, Yen-Wei ; Tong, Ruofeng ; Hu, Hongjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i189t-33c167b909d809da998624296b0f94876113a191d8effa1f8df0d58dd68d19393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anatomical Priors</topic><topic>Biomedical imaging</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Image segmentation</topic><topic>Labels</topic><topic>Learning</topic><topic>Localization</topic><topic>Medical imaging</topic><topic>Multi-task Learning</topic><topic>Multitasking</topic><topic>Organ Segmentation</topic><topic>Probabilistic logic</topic><topic>Reconstruction</topic><topic>Self-training</topic><topic>Semi-supervised learning</topic><topic>Semi-supervised Learning (SSL)</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Huimin</creatorcontrib><creatorcontrib>Chen, Qingqing</creatorcontrib><creatorcontrib>Lin, Lanfen</creatorcontrib><creatorcontrib>Cai, Ming</creatorcontrib><creatorcontrib>Zhang, Qiaowei</creatorcontrib><creatorcontrib>Iwamoto, Yutaro</creatorcontrib><creatorcontrib>Han, Xianhua</creatorcontrib><creatorcontrib>Furukawa, Akira</creatorcontrib><creatorcontrib>Kanasaki, Shuzo</creatorcontrib><creatorcontrib>Chen, Yen-Wei</creatorcontrib><creatorcontrib>Tong, Ruofeng</creatorcontrib><creatorcontrib>Hu, Hongjie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>PubMed</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Huimin</au><au>Chen, Qingqing</au><au>Lin, Lanfen</au><au>Cai, Ming</au><au>Zhang, Qiaowei</au><au>Iwamoto, Yutaro</au><au>Han, Xianhua</au><au>Furukawa, Akira</au><au>Kanasaki, Shuzo</au><au>Chen, Yen-Wei</au><au>Tong, Ruofeng</au><au>Hu, Hongjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MTL-ABS3Net: Atlas-Based Semi-Supervised Organ Segmentation Network With Multi-Task Learning for Medical Images</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>26</volume><issue>8</issue><spage>3988</spage><epage>3998</epage><pages>3988-3998</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Organ segmentation is one of the most important step for various medical image analysis tasks. Recently, semi-supervised learning (SSL) has attracted much attentions by reducing labeling cost. However, most of the existing SSLs neglected the prior shape and position information specialized in the medical images, leading to unsatisfactory localization and non-smooth of objects. In this paper, we propose a novel atlas-based semi-supervised segmentation network with multi-task learning for medical organs, named MTL-ABS 3 Net, which incorporates the anatomical priors and makes full use of unlabeled data in a self-training and multi-task learning manner. The MTL-ABS 3 Net consists of two components: an Atlas-Based Semi-Supervised Segmentation Network (ABS 3 Net) and Reconstruction-Assisted Module (RAM). Specifically, the ABS 3 Net improves the existing SSLs by utilizing atlas prior, which generates credible pseudo labels in a self-training manner; while the RAM further assists the segmentation network by capturing the anatomical structures from the original images in a multi-task learning manner. Better reconstruction quality is achieved by using MS-SSIM loss function, which further improves the segmentation accuracy. Experimental results from the liver and spleen datasets demonstrated that the performance of our method was significantly improved compared to existing state-of-the-art methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35213319</pmid><doi>10.1109/JBHI.2022.3153406</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6723-8652</orcidid><orcidid>https://orcid.org/0000-0002-5003-3180</orcidid><orcidid>https://orcid.org/0000-0003-2268-1938</orcidid><orcidid>https://orcid.org/0000-0003-4098-588X</orcidid><orcidid>https://orcid.org/0000-0002-8167-5354</orcidid><orcidid>https://orcid.org/0000-0001-8987-350X</orcidid><orcidid>https://orcid.org/0000-0001-5367-5923</orcidid><orcidid>https://orcid.org/0000-0002-5952-0188</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2022-08, Vol.26 (8), p.3988-3998
issn 2168-2194
2168-2208
language eng
recordid cdi_proquest_journals_2703423016
source IEEE Electronic Library (IEL) Journals
subjects Anatomical Priors
Biomedical imaging
Image analysis
Image processing
Image reconstruction
Image segmentation
Labels
Learning
Localization
Medical imaging
Multi-task Learning
Multitasking
Organ Segmentation
Probabilistic logic
Reconstruction
Self-training
Semi-supervised learning
Semi-supervised Learning (SSL)
Task analysis
Training
title MTL-ABS3Net: Atlas-Based Semi-Supervised Organ Segmentation Network With Multi-Task Learning for Medical Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A44%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MTL-ABS3Net:%20Atlas-Based%20Semi-Supervised%20Organ%20Segmentation%20Network%20With%20Multi-Task%20Learning%20for%20Medical%20Images&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Huang,%20Huimin&rft.date=2022-08-01&rft.volume=26&rft.issue=8&rft.spage=3988&rft.epage=3998&rft.pages=3988-3998&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2022.3153406&rft_dat=%3Cproquest_ieee_%3E2633850245%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i189t-33c167b909d809da998624296b0f94876113a191d8effa1f8df0d58dd68d19393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2703423016&rft_id=info:pmid/35213319&rft_ieee_id=9721677&rfr_iscdi=true