Loading…
MTL-ABS3Net: Atlas-Based Semi-Supervised Organ Segmentation Network With Multi-Task Learning for Medical Images
Organ segmentation is one of the most important step for various medical image analysis tasks. Recently, semi-supervised learning (SSL) has attracted much attentions by reducing labeling cost. However, most of the existing SSLs neglected the prior shape and position information specialized in the me...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2022-08, Vol.26 (8), p.3988-3998 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3998 |
container_issue | 8 |
container_start_page | 3988 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 26 |
creator | Huang, Huimin Chen, Qingqing Lin, Lanfen Cai, Ming Zhang, Qiaowei Iwamoto, Yutaro Han, Xianhua Furukawa, Akira Kanasaki, Shuzo Chen, Yen-Wei Tong, Ruofeng Hu, Hongjie |
description | Organ segmentation is one of the most important step for various medical image analysis tasks. Recently, semi-supervised learning (SSL) has attracted much attentions by reducing labeling cost. However, most of the existing SSLs neglected the prior shape and position information specialized in the medical images, leading to unsatisfactory localization and non-smooth of objects. In this paper, we propose a novel atlas-based semi-supervised segmentation network with multi-task learning for medical organs, named MTL-ABS 3 Net, which incorporates the anatomical priors and makes full use of unlabeled data in a self-training and multi-task learning manner. The MTL-ABS 3 Net consists of two components: an Atlas-Based Semi-Supervised Segmentation Network (ABS 3 Net) and Reconstruction-Assisted Module (RAM). Specifically, the ABS 3 Net improves the existing SSLs by utilizing atlas prior, which generates credible pseudo labels in a self-training manner; while the RAM further assists the segmentation network by capturing the anatomical structures from the original images in a multi-task learning manner. Better reconstruction quality is achieved by using MS-SSIM loss function, which further improves the segmentation accuracy. Experimental results from the liver and spleen datasets demonstrated that the performance of our method was significantly improved compared to existing state-of-the-art methods. |
doi_str_mv | 10.1109/JBHI.2022.3153406 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2703423016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9721677</ieee_id><sourcerecordid>2633850245</sourcerecordid><originalsourceid>FETCH-LOGICAL-i189t-33c167b909d809da998624296b0f94876113a191d8effa1f8df0d58dd68d19393</originalsourceid><addsrcrecordid>eNpdkUtLAzEQgIMoKuoPEEECXrxszSS72cRbKz4qrR5a8bikzWyN7qMmu4r_3oiPgwPDvL4ZhhlCDoENAJg-ux3djAeccT4QkImUyQ2yy0GqhHOmNn990OkOOQjhmUVRMaXlNtkRGQchQO-SdjqfJMPRTNxhd06HXWVCMjIBLZ1h7ZJZv0b_5r7ie78yTcyuamw607m2obHnvfUv9NF1T3TaV51L5ia80Aka37hmRcvW0ylatzQVHddmhWGfbJWmCnjwY_fIw9Xl_OImmdxfjy-Gk8SB0l0ixBJkvtBMWxXVaK0kT7mWC1bqVOUSQBjQYBWWpYFS2ZLZTFkrlQUttNgjp99z17597TF0Re3CEqvKNNj2oeBSCJUxnmYRPfmHPre9b-J2Bc-ZSLlgICN1_EP1ixptsfauNv6j-D1lBI6-AYeIf2Wdxz_kufgEyK99EA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703423016</pqid></control><display><type>article</type><title>MTL-ABS3Net: Atlas-Based Semi-Supervised Organ Segmentation Network With Multi-Task Learning for Medical Images</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Huang, Huimin ; Chen, Qingqing ; Lin, Lanfen ; Cai, Ming ; Zhang, Qiaowei ; Iwamoto, Yutaro ; Han, Xianhua ; Furukawa, Akira ; Kanasaki, Shuzo ; Chen, Yen-Wei ; Tong, Ruofeng ; Hu, Hongjie</creator><creatorcontrib>Huang, Huimin ; Chen, Qingqing ; Lin, Lanfen ; Cai, Ming ; Zhang, Qiaowei ; Iwamoto, Yutaro ; Han, Xianhua ; Furukawa, Akira ; Kanasaki, Shuzo ; Chen, Yen-Wei ; Tong, Ruofeng ; Hu, Hongjie</creatorcontrib><description>Organ segmentation is one of the most important step for various medical image analysis tasks. Recently, semi-supervised learning (SSL) has attracted much attentions by reducing labeling cost. However, most of the existing SSLs neglected the prior shape and position information specialized in the medical images, leading to unsatisfactory localization and non-smooth of objects. In this paper, we propose a novel atlas-based semi-supervised segmentation network with multi-task learning for medical organs, named MTL-ABS 3 Net, which incorporates the anatomical priors and makes full use of unlabeled data in a self-training and multi-task learning manner. The MTL-ABS 3 Net consists of two components: an Atlas-Based Semi-Supervised Segmentation Network (ABS 3 Net) and Reconstruction-Assisted Module (RAM). Specifically, the ABS 3 Net improves the existing SSLs by utilizing atlas prior, which generates credible pseudo labels in a self-training manner; while the RAM further assists the segmentation network by capturing the anatomical structures from the original images in a multi-task learning manner. Better reconstruction quality is achieved by using MS-SSIM loss function, which further improves the segmentation accuracy. Experimental results from the liver and spleen datasets demonstrated that the performance of our method was significantly improved compared to existing state-of-the-art methods.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2022.3153406</identifier><identifier>PMID: 35213319</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Anatomical Priors ; Biomedical imaging ; Image analysis ; Image processing ; Image reconstruction ; Image segmentation ; Labels ; Learning ; Localization ; Medical imaging ; Multi-task Learning ; Multitasking ; Organ Segmentation ; Probabilistic logic ; Reconstruction ; Self-training ; Semi-supervised learning ; Semi-supervised Learning (SSL) ; Task analysis ; Training</subject><ispartof>IEEE journal of biomedical and health informatics, 2022-08, Vol.26 (8), p.3988-3998</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6723-8652 ; 0000-0002-5003-3180 ; 0000-0003-2268-1938 ; 0000-0003-4098-588X ; 0000-0002-8167-5354 ; 0000-0001-8987-350X ; 0000-0001-5367-5923 ; 0000-0002-5952-0188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9721677$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35213319$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Huimin</creatorcontrib><creatorcontrib>Chen, Qingqing</creatorcontrib><creatorcontrib>Lin, Lanfen</creatorcontrib><creatorcontrib>Cai, Ming</creatorcontrib><creatorcontrib>Zhang, Qiaowei</creatorcontrib><creatorcontrib>Iwamoto, Yutaro</creatorcontrib><creatorcontrib>Han, Xianhua</creatorcontrib><creatorcontrib>Furukawa, Akira</creatorcontrib><creatorcontrib>Kanasaki, Shuzo</creatorcontrib><creatorcontrib>Chen, Yen-Wei</creatorcontrib><creatorcontrib>Tong, Ruofeng</creatorcontrib><creatorcontrib>Hu, Hongjie</creatorcontrib><title>MTL-ABS3Net: Atlas-Based Semi-Supervised Organ Segmentation Network With Multi-Task Learning for Medical Images</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Organ segmentation is one of the most important step for various medical image analysis tasks. Recently, semi-supervised learning (SSL) has attracted much attentions by reducing labeling cost. However, most of the existing SSLs neglected the prior shape and position information specialized in the medical images, leading to unsatisfactory localization and non-smooth of objects. In this paper, we propose a novel atlas-based semi-supervised segmentation network with multi-task learning for medical organs, named MTL-ABS 3 Net, which incorporates the anatomical priors and makes full use of unlabeled data in a self-training and multi-task learning manner. The MTL-ABS 3 Net consists of two components: an Atlas-Based Semi-Supervised Segmentation Network (ABS 3 Net) and Reconstruction-Assisted Module (RAM). Specifically, the ABS 3 Net improves the existing SSLs by utilizing atlas prior, which generates credible pseudo labels in a self-training manner; while the RAM further assists the segmentation network by capturing the anatomical structures from the original images in a multi-task learning manner. Better reconstruction quality is achieved by using MS-SSIM loss function, which further improves the segmentation accuracy. Experimental results from the liver and spleen datasets demonstrated that the performance of our method was significantly improved compared to existing state-of-the-art methods.</description><subject>Anatomical Priors</subject><subject>Biomedical imaging</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Image segmentation</subject><subject>Labels</subject><subject>Learning</subject><subject>Localization</subject><subject>Medical imaging</subject><subject>Multi-task Learning</subject><subject>Multitasking</subject><subject>Organ Segmentation</subject><subject>Probabilistic logic</subject><subject>Reconstruction</subject><subject>Self-training</subject><subject>Semi-supervised learning</subject><subject>Semi-supervised Learning (SSL)</subject><subject>Task analysis</subject><subject>Training</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkUtLAzEQgIMoKuoPEEECXrxszSS72cRbKz4qrR5a8bikzWyN7qMmu4r_3oiPgwPDvL4ZhhlCDoENAJg-ux3djAeccT4QkImUyQ2yy0GqhHOmNn990OkOOQjhmUVRMaXlNtkRGQchQO-SdjqfJMPRTNxhd06HXWVCMjIBLZ1h7ZJZv0b_5r7ie78yTcyuamw607m2obHnvfUv9NF1T3TaV51L5ia80Aka37hmRcvW0ylatzQVHddmhWGfbJWmCnjwY_fIw9Xl_OImmdxfjy-Gk8SB0l0ixBJkvtBMWxXVaK0kT7mWC1bqVOUSQBjQYBWWpYFS2ZLZTFkrlQUttNgjp99z17597TF0Re3CEqvKNNj2oeBSCJUxnmYRPfmHPre9b-J2Bc-ZSLlgICN1_EP1ixptsfauNv6j-D1lBI6-AYeIf2Wdxz_kufgEyK99EA</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Huang, Huimin</creator><creator>Chen, Qingqing</creator><creator>Lin, Lanfen</creator><creator>Cai, Ming</creator><creator>Zhang, Qiaowei</creator><creator>Iwamoto, Yutaro</creator><creator>Han, Xianhua</creator><creator>Furukawa, Akira</creator><creator>Kanasaki, Shuzo</creator><creator>Chen, Yen-Wei</creator><creator>Tong, Ruofeng</creator><creator>Hu, Hongjie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6723-8652</orcidid><orcidid>https://orcid.org/0000-0002-5003-3180</orcidid><orcidid>https://orcid.org/0000-0003-2268-1938</orcidid><orcidid>https://orcid.org/0000-0003-4098-588X</orcidid><orcidid>https://orcid.org/0000-0002-8167-5354</orcidid><orcidid>https://orcid.org/0000-0001-8987-350X</orcidid><orcidid>https://orcid.org/0000-0001-5367-5923</orcidid><orcidid>https://orcid.org/0000-0002-5952-0188</orcidid></search><sort><creationdate>20220801</creationdate><title>MTL-ABS3Net: Atlas-Based Semi-Supervised Organ Segmentation Network With Multi-Task Learning for Medical Images</title><author>Huang, Huimin ; Chen, Qingqing ; Lin, Lanfen ; Cai, Ming ; Zhang, Qiaowei ; Iwamoto, Yutaro ; Han, Xianhua ; Furukawa, Akira ; Kanasaki, Shuzo ; Chen, Yen-Wei ; Tong, Ruofeng ; Hu, Hongjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i189t-33c167b909d809da998624296b0f94876113a191d8effa1f8df0d58dd68d19393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anatomical Priors</topic><topic>Biomedical imaging</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Image segmentation</topic><topic>Labels</topic><topic>Learning</topic><topic>Localization</topic><topic>Medical imaging</topic><topic>Multi-task Learning</topic><topic>Multitasking</topic><topic>Organ Segmentation</topic><topic>Probabilistic logic</topic><topic>Reconstruction</topic><topic>Self-training</topic><topic>Semi-supervised learning</topic><topic>Semi-supervised Learning (SSL)</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Huimin</creatorcontrib><creatorcontrib>Chen, Qingqing</creatorcontrib><creatorcontrib>Lin, Lanfen</creatorcontrib><creatorcontrib>Cai, Ming</creatorcontrib><creatorcontrib>Zhang, Qiaowei</creatorcontrib><creatorcontrib>Iwamoto, Yutaro</creatorcontrib><creatorcontrib>Han, Xianhua</creatorcontrib><creatorcontrib>Furukawa, Akira</creatorcontrib><creatorcontrib>Kanasaki, Shuzo</creatorcontrib><creatorcontrib>Chen, Yen-Wei</creatorcontrib><creatorcontrib>Tong, Ruofeng</creatorcontrib><creatorcontrib>Hu, Hongjie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>PubMed</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Huimin</au><au>Chen, Qingqing</au><au>Lin, Lanfen</au><au>Cai, Ming</au><au>Zhang, Qiaowei</au><au>Iwamoto, Yutaro</au><au>Han, Xianhua</au><au>Furukawa, Akira</au><au>Kanasaki, Shuzo</au><au>Chen, Yen-Wei</au><au>Tong, Ruofeng</au><au>Hu, Hongjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MTL-ABS3Net: Atlas-Based Semi-Supervised Organ Segmentation Network With Multi-Task Learning for Medical Images</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>26</volume><issue>8</issue><spage>3988</spage><epage>3998</epage><pages>3988-3998</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Organ segmentation is one of the most important step for various medical image analysis tasks. Recently, semi-supervised learning (SSL) has attracted much attentions by reducing labeling cost. However, most of the existing SSLs neglected the prior shape and position information specialized in the medical images, leading to unsatisfactory localization and non-smooth of objects. In this paper, we propose a novel atlas-based semi-supervised segmentation network with multi-task learning for medical organs, named MTL-ABS 3 Net, which incorporates the anatomical priors and makes full use of unlabeled data in a self-training and multi-task learning manner. The MTL-ABS 3 Net consists of two components: an Atlas-Based Semi-Supervised Segmentation Network (ABS 3 Net) and Reconstruction-Assisted Module (RAM). Specifically, the ABS 3 Net improves the existing SSLs by utilizing atlas prior, which generates credible pseudo labels in a self-training manner; while the RAM further assists the segmentation network by capturing the anatomical structures from the original images in a multi-task learning manner. Better reconstruction quality is achieved by using MS-SSIM loss function, which further improves the segmentation accuracy. Experimental results from the liver and spleen datasets demonstrated that the performance of our method was significantly improved compared to existing state-of-the-art methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35213319</pmid><doi>10.1109/JBHI.2022.3153406</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6723-8652</orcidid><orcidid>https://orcid.org/0000-0002-5003-3180</orcidid><orcidid>https://orcid.org/0000-0003-2268-1938</orcidid><orcidid>https://orcid.org/0000-0003-4098-588X</orcidid><orcidid>https://orcid.org/0000-0002-8167-5354</orcidid><orcidid>https://orcid.org/0000-0001-8987-350X</orcidid><orcidid>https://orcid.org/0000-0001-5367-5923</orcidid><orcidid>https://orcid.org/0000-0002-5952-0188</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2022-08, Vol.26 (8), p.3988-3998 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_proquest_journals_2703423016 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Anatomical Priors Biomedical imaging Image analysis Image processing Image reconstruction Image segmentation Labels Learning Localization Medical imaging Multi-task Learning Multitasking Organ Segmentation Probabilistic logic Reconstruction Self-training Semi-supervised learning Semi-supervised Learning (SSL) Task analysis Training |
title | MTL-ABS3Net: Atlas-Based Semi-Supervised Organ Segmentation Network With Multi-Task Learning for Medical Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A44%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MTL-ABS3Net:%20Atlas-Based%20Semi-Supervised%20Organ%20Segmentation%20Network%20With%20Multi-Task%20Learning%20for%20Medical%20Images&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Huang,%20Huimin&rft.date=2022-08-01&rft.volume=26&rft.issue=8&rft.spage=3988&rft.epage=3998&rft.pages=3988-3998&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2022.3153406&rft_dat=%3Cproquest_ieee_%3E2633850245%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i189t-33c167b909d809da998624296b0f94876113a191d8effa1f8df0d58dd68d19393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2703423016&rft_id=info:pmid/35213319&rft_ieee_id=9721677&rfr_iscdi=true |