Loading…

Design and Implementation of LCL Filter-Based Electric Machine Emulator With Disturbance Compensation

The electric machine emulator (EME), using digital simulation and power electronics to emulate the characteristics of actual machines, can greatly accelerate the testing of electric drives. However, most existing EMEs are based on typical L filter and linear controller, which causes control conflict...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.82580-82595
Main Authors: Sun, Qingle, Wang, Zhifu, Wang, Zeshang, Hao, Wenmei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The electric machine emulator (EME), using digital simulation and power electronics to emulate the characteristics of actual machines, can greatly accelerate the testing of electric drives. However, most existing EMEs are based on typical L filter and linear controller, which causes control conflicts and bandwidth limitation. To address this issue, this paper presents an EME based on LCL filter with passive damping for a three-phase permanent magnet synchronous motor. To improve the dynamic emulating accuracy, a dual closed-loop deadbeat predictive current control algorithm is proposed, which is computationally efficient and easy to implement. The system stability is analyzed in the discrete domain, and the parameter constraints of the filter are obtained. Then, two unknown input observers are designed to compensate for the disturbance currents and voltages caused by modeling errors. Moreover, instead of the empirical method, a theoretical one considering the harmonic suppression, bandwidth, stability and resonance is presented for filter design. Finally, the performance of the proposed EME is validated through simulation and experimental results under various conditions such as machine start-up, torque step change, and speed reversal.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3194055