Loading…

Design and Implementation of LCL Filter-Based Electric Machine Emulator With Disturbance Compensation

The electric machine emulator (EME), using digital simulation and power electronics to emulate the characteristics of actual machines, can greatly accelerate the testing of electric drives. However, most existing EMEs are based on typical L filter and linear controller, which causes control conflict...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.82580-82595
Main Authors: Sun, Qingle, Wang, Zhifu, Wang, Zeshang, Hao, Wenmei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c358t-598ed2f2915dbb25e4a931b4eec61b883c4e663a5496deb3d9d4413a6869d0f93
container_end_page 82595
container_issue
container_start_page 82580
container_title IEEE access
container_volume 10
creator Sun, Qingle
Wang, Zhifu
Wang, Zeshang
Hao, Wenmei
description The electric machine emulator (EME), using digital simulation and power electronics to emulate the characteristics of actual machines, can greatly accelerate the testing of electric drives. However, most existing EMEs are based on typical L filter and linear controller, which causes control conflicts and bandwidth limitation. To address this issue, this paper presents an EME based on LCL filter with passive damping for a three-phase permanent magnet synchronous motor. To improve the dynamic emulating accuracy, a dual closed-loop deadbeat predictive current control algorithm is proposed, which is computationally efficient and easy to implement. The system stability is analyzed in the discrete domain, and the parameter constraints of the filter are obtained. Then, two unknown input observers are designed to compensate for the disturbance currents and voltages caused by modeling errors. Moreover, instead of the empirical method, a theoretical one considering the harmonic suppression, bandwidth, stability and resonance is presented for filter design. Finally, the performance of the proposed EME is validated through simulation and experimental results under various conditions such as machine start-up, torque step change, and speed reversal.
doi_str_mv 10.1109/ACCESS.2022.3194055
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2703438725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9840364</ieee_id><doaj_id>oai_doaj_org_article_639f23d6d6a244ec9e1a814fcbe13c42</doaj_id><sourcerecordid>2703438725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-598ed2f2915dbb25e4a931b4eec61b883c4e663a5496deb3d9d4413a6869d0f93</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNaWFhjS_IBdBz95KGkkrHVNn0y5s6SEtPQpZGidabGsraQ_993HiEDqXGR7vY-A1zTWjG8ao-XLTdbv7-w2nnG-AGUGlfNdccKZMCxLU-__uj81VKUe6jF4gub1o8BZLfJiJmwPZT6cRJ5yrqzHNJA3k0B3IXRwr5varKxjIbkRfc_Tkh_OPcUaym86jqymTP7E-kttY6jn3bvZIujSdcC4vXp-aD4MbC1697svm993uV_e9Pfz8tu9uDq0HqWsrjcbAB26YDH3PJQpngPUC0SvWaw1eoFLgpDAqYA_BBCEYOKWVCXQwcNnsV9-Q3NGecpxc_meTi_YFSPnBulyjH9EqMAOHoIJyXAj0BpnTTAy-R7bk8MXr8-p1yunvGUu1x3TO8_K-5VsKAvSWy4UFK8vnVErG4S2VUftcj13rsc_12Nd6FtX1qoqI-KYwWlBQAp4Atd6LUA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703438725</pqid></control><display><type>article</type><title>Design and Implementation of LCL Filter-Based Electric Machine Emulator With Disturbance Compensation</title><source>IEEE Open Access Journals</source><creator>Sun, Qingle ; Wang, Zhifu ; Wang, Zeshang ; Hao, Wenmei</creator><creatorcontrib>Sun, Qingle ; Wang, Zhifu ; Wang, Zeshang ; Hao, Wenmei</creatorcontrib><description>The electric machine emulator (EME), using digital simulation and power electronics to emulate the characteristics of actual machines, can greatly accelerate the testing of electric drives. However, most existing EMEs are based on typical L filter and linear controller, which causes control conflicts and bandwidth limitation. To address this issue, this paper presents an EME based on LCL filter with passive damping for a three-phase permanent magnet synchronous motor. To improve the dynamic emulating accuracy, a dual closed-loop deadbeat predictive current control algorithm is proposed, which is computationally efficient and easy to implement. The system stability is analyzed in the discrete domain, and the parameter constraints of the filter are obtained. Then, two unknown input observers are designed to compensate for the disturbance currents and voltages caused by modeling errors. Moreover, instead of the empirical method, a theoretical one considering the harmonic suppression, bandwidth, stability and resonance is presented for filter design. Finally, the performance of the proposed EME is validated through simulation and experimental results under various conditions such as machine start-up, torque step change, and speed reversal.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3194055</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Bandwidth ; Control algorithms ; Control theory ; Damping ; Digital simulation ; dual closed-loop deadbeat predictive current control ; Electric drives ; Electric machine emulator (EME) ; Empirical analysis ; Emulators ; Filter design (mathematics) ; Heuristic algorithms ; Information filters ; LCL filter ; Mathematical models ; Permanent magnets ; Power harmonic filters ; Predictive control ; Robustness ; Rotors ; Stability analysis ; Synchronous motors ; Systems stability ; unknown input observer</subject><ispartof>IEEE access, 2022, Vol.10, p.82580-82595</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-598ed2f2915dbb25e4a931b4eec61b883c4e663a5496deb3d9d4413a6869d0f93</cites><orcidid>0000-0002-3242-2561 ; 0000-0002-6116-5429 ; 0000-0003-1639-748X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9840364$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Sun, Qingle</creatorcontrib><creatorcontrib>Wang, Zhifu</creatorcontrib><creatorcontrib>Wang, Zeshang</creatorcontrib><creatorcontrib>Hao, Wenmei</creatorcontrib><title>Design and Implementation of LCL Filter-Based Electric Machine Emulator With Disturbance Compensation</title><title>IEEE access</title><addtitle>Access</addtitle><description>The electric machine emulator (EME), using digital simulation and power electronics to emulate the characteristics of actual machines, can greatly accelerate the testing of electric drives. However, most existing EMEs are based on typical L filter and linear controller, which causes control conflicts and bandwidth limitation. To address this issue, this paper presents an EME based on LCL filter with passive damping for a three-phase permanent magnet synchronous motor. To improve the dynamic emulating accuracy, a dual closed-loop deadbeat predictive current control algorithm is proposed, which is computationally efficient and easy to implement. The system stability is analyzed in the discrete domain, and the parameter constraints of the filter are obtained. Then, two unknown input observers are designed to compensate for the disturbance currents and voltages caused by modeling errors. Moreover, instead of the empirical method, a theoretical one considering the harmonic suppression, bandwidth, stability and resonance is presented for filter design. Finally, the performance of the proposed EME is validated through simulation and experimental results under various conditions such as machine start-up, torque step change, and speed reversal.</description><subject>Algorithms</subject><subject>Bandwidth</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Damping</subject><subject>Digital simulation</subject><subject>dual closed-loop deadbeat predictive current control</subject><subject>Electric drives</subject><subject>Electric machine emulator (EME)</subject><subject>Empirical analysis</subject><subject>Emulators</subject><subject>Filter design (mathematics)</subject><subject>Heuristic algorithms</subject><subject>Information filters</subject><subject>LCL filter</subject><subject>Mathematical models</subject><subject>Permanent magnets</subject><subject>Power harmonic filters</subject><subject>Predictive control</subject><subject>Robustness</subject><subject>Rotors</subject><subject>Stability analysis</subject><subject>Synchronous motors</subject><subject>Systems stability</subject><subject>unknown input observer</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNaWFhjS_IBdBz95KGkkrHVNn0y5s6SEtPQpZGidabGsraQ_993HiEDqXGR7vY-A1zTWjG8ao-XLTdbv7-w2nnG-AGUGlfNdccKZMCxLU-__uj81VKUe6jF4gub1o8BZLfJiJmwPZT6cRJ5yrqzHNJA3k0B3IXRwr5varKxjIbkRfc_Tkh_OPcUaym86jqymTP7E-kttY6jn3bvZIujSdcC4vXp-aD4MbC1697svm993uV_e9Pfz8tu9uDq0HqWsrjcbAB26YDH3PJQpngPUC0SvWaw1eoFLgpDAqYA_BBCEYOKWVCXQwcNnsV9-Q3NGecpxc_meTi_YFSPnBulyjH9EqMAOHoIJyXAj0BpnTTAy-R7bk8MXr8-p1yunvGUu1x3TO8_K-5VsKAvSWy4UFK8vnVErG4S2VUftcj13rsc_12Nd6FtX1qoqI-KYwWlBQAp4Atd6LUA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Sun, Qingle</creator><creator>Wang, Zhifu</creator><creator>Wang, Zeshang</creator><creator>Hao, Wenmei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3242-2561</orcidid><orcidid>https://orcid.org/0000-0002-6116-5429</orcidid><orcidid>https://orcid.org/0000-0003-1639-748X</orcidid></search><sort><creationdate>2022</creationdate><title>Design and Implementation of LCL Filter-Based Electric Machine Emulator With Disturbance Compensation</title><author>Sun, Qingle ; Wang, Zhifu ; Wang, Zeshang ; Hao, Wenmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-598ed2f2915dbb25e4a931b4eec61b883c4e663a5496deb3d9d4413a6869d0f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bandwidth</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Damping</topic><topic>Digital simulation</topic><topic>dual closed-loop deadbeat predictive current control</topic><topic>Electric drives</topic><topic>Electric machine emulator (EME)</topic><topic>Empirical analysis</topic><topic>Emulators</topic><topic>Filter design (mathematics)</topic><topic>Heuristic algorithms</topic><topic>Information filters</topic><topic>LCL filter</topic><topic>Mathematical models</topic><topic>Permanent magnets</topic><topic>Power harmonic filters</topic><topic>Predictive control</topic><topic>Robustness</topic><topic>Rotors</topic><topic>Stability analysis</topic><topic>Synchronous motors</topic><topic>Systems stability</topic><topic>unknown input observer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Qingle</creatorcontrib><creatorcontrib>Wang, Zhifu</creatorcontrib><creatorcontrib>Wang, Zeshang</creatorcontrib><creatorcontrib>Hao, Wenmei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Qingle</au><au>Wang, Zhifu</au><au>Wang, Zeshang</au><au>Hao, Wenmei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Implementation of LCL Filter-Based Electric Machine Emulator With Disturbance Compensation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>82580</spage><epage>82595</epage><pages>82580-82595</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The electric machine emulator (EME), using digital simulation and power electronics to emulate the characteristics of actual machines, can greatly accelerate the testing of electric drives. However, most existing EMEs are based on typical L filter and linear controller, which causes control conflicts and bandwidth limitation. To address this issue, this paper presents an EME based on LCL filter with passive damping for a three-phase permanent magnet synchronous motor. To improve the dynamic emulating accuracy, a dual closed-loop deadbeat predictive current control algorithm is proposed, which is computationally efficient and easy to implement. The system stability is analyzed in the discrete domain, and the parameter constraints of the filter are obtained. Then, two unknown input observers are designed to compensate for the disturbance currents and voltages caused by modeling errors. Moreover, instead of the empirical method, a theoretical one considering the harmonic suppression, bandwidth, stability and resonance is presented for filter design. Finally, the performance of the proposed EME is validated through simulation and experimental results under various conditions such as machine start-up, torque step change, and speed reversal.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3194055</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3242-2561</orcidid><orcidid>https://orcid.org/0000-0002-6116-5429</orcidid><orcidid>https://orcid.org/0000-0003-1639-748X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.82580-82595
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2703438725
source IEEE Open Access Journals
subjects Algorithms
Bandwidth
Control algorithms
Control theory
Damping
Digital simulation
dual closed-loop deadbeat predictive current control
Electric drives
Electric machine emulator (EME)
Empirical analysis
Emulators
Filter design (mathematics)
Heuristic algorithms
Information filters
LCL filter
Mathematical models
Permanent magnets
Power harmonic filters
Predictive control
Robustness
Rotors
Stability analysis
Synchronous motors
Systems stability
unknown input observer
title Design and Implementation of LCL Filter-Based Electric Machine Emulator With Disturbance Compensation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A27%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Implementation%20of%20LCL%20Filter-Based%20Electric%20Machine%20Emulator%20With%20Disturbance%20Compensation&rft.jtitle=IEEE%20access&rft.au=Sun,%20Qingle&rft.date=2022&rft.volume=10&rft.spage=82580&rft.epage=82595&rft.pages=82580-82595&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3194055&rft_dat=%3Cproquest_doaj_%3E2703438725%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-598ed2f2915dbb25e4a931b4eec61b883c4e663a5496deb3d9d4413a6869d0f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2703438725&rft_id=info:pmid/&rft_ieee_id=9840364&rfr_iscdi=true