Loading…
Design and Implementation of LCL Filter-Based Electric Machine Emulator With Disturbance Compensation
The electric machine emulator (EME), using digital simulation and power electronics to emulate the characteristics of actual machines, can greatly accelerate the testing of electric drives. However, most existing EMEs are based on typical L filter and linear controller, which causes control conflict...
Saved in:
Published in: | IEEE access 2022, Vol.10, p.82580-82595 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-598ed2f2915dbb25e4a931b4eec61b883c4e663a5496deb3d9d4413a6869d0f93 |
container_end_page | 82595 |
container_issue | |
container_start_page | 82580 |
container_title | IEEE access |
container_volume | 10 |
creator | Sun, Qingle Wang, Zhifu Wang, Zeshang Hao, Wenmei |
description | The electric machine emulator (EME), using digital simulation and power electronics to emulate the characteristics of actual machines, can greatly accelerate the testing of electric drives. However, most existing EMEs are based on typical L filter and linear controller, which causes control conflicts and bandwidth limitation. To address this issue, this paper presents an EME based on LCL filter with passive damping for a three-phase permanent magnet synchronous motor. To improve the dynamic emulating accuracy, a dual closed-loop deadbeat predictive current control algorithm is proposed, which is computationally efficient and easy to implement. The system stability is analyzed in the discrete domain, and the parameter constraints of the filter are obtained. Then, two unknown input observers are designed to compensate for the disturbance currents and voltages caused by modeling errors. Moreover, instead of the empirical method, a theoretical one considering the harmonic suppression, bandwidth, stability and resonance is presented for filter design. Finally, the performance of the proposed EME is validated through simulation and experimental results under various conditions such as machine start-up, torque step change, and speed reversal. |
doi_str_mv | 10.1109/ACCESS.2022.3194055 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2703438725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9840364</ieee_id><doaj_id>oai_doaj_org_article_639f23d6d6a244ec9e1a814fcbe13c42</doaj_id><sourcerecordid>2703438725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-598ed2f2915dbb25e4a931b4eec61b883c4e663a5496deb3d9d4413a6869d0f93</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNaWFhjS_IBdBz95KGkkrHVNn0y5s6SEtPQpZGidabGsraQ_993HiEDqXGR7vY-A1zTWjG8ao-XLTdbv7-w2nnG-AGUGlfNdccKZMCxLU-__uj81VKUe6jF4gub1o8BZLfJiJmwPZT6cRJ5yrqzHNJA3k0B3IXRwr5varKxjIbkRfc_Tkh_OPcUaym86jqymTP7E-kttY6jn3bvZIujSdcC4vXp-aD4MbC1697svm993uV_e9Pfz8tu9uDq0HqWsrjcbAB26YDH3PJQpngPUC0SvWaw1eoFLgpDAqYA_BBCEYOKWVCXQwcNnsV9-Q3NGecpxc_meTi_YFSPnBulyjH9EqMAOHoIJyXAj0BpnTTAy-R7bk8MXr8-p1yunvGUu1x3TO8_K-5VsKAvSWy4UFK8vnVErG4S2VUftcj13rsc_12Nd6FtX1qoqI-KYwWlBQAp4Atd6LUA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703438725</pqid></control><display><type>article</type><title>Design and Implementation of LCL Filter-Based Electric Machine Emulator With Disturbance Compensation</title><source>IEEE Open Access Journals</source><creator>Sun, Qingle ; Wang, Zhifu ; Wang, Zeshang ; Hao, Wenmei</creator><creatorcontrib>Sun, Qingle ; Wang, Zhifu ; Wang, Zeshang ; Hao, Wenmei</creatorcontrib><description>The electric machine emulator (EME), using digital simulation and power electronics to emulate the characteristics of actual machines, can greatly accelerate the testing of electric drives. However, most existing EMEs are based on typical L filter and linear controller, which causes control conflicts and bandwidth limitation. To address this issue, this paper presents an EME based on LCL filter with passive damping for a three-phase permanent magnet synchronous motor. To improve the dynamic emulating accuracy, a dual closed-loop deadbeat predictive current control algorithm is proposed, which is computationally efficient and easy to implement. The system stability is analyzed in the discrete domain, and the parameter constraints of the filter are obtained. Then, two unknown input observers are designed to compensate for the disturbance currents and voltages caused by modeling errors. Moreover, instead of the empirical method, a theoretical one considering the harmonic suppression, bandwidth, stability and resonance is presented for filter design. Finally, the performance of the proposed EME is validated through simulation and experimental results under various conditions such as machine start-up, torque step change, and speed reversal.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3194055</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Bandwidth ; Control algorithms ; Control theory ; Damping ; Digital simulation ; dual closed-loop deadbeat predictive current control ; Electric drives ; Electric machine emulator (EME) ; Empirical analysis ; Emulators ; Filter design (mathematics) ; Heuristic algorithms ; Information filters ; LCL filter ; Mathematical models ; Permanent magnets ; Power harmonic filters ; Predictive control ; Robustness ; Rotors ; Stability analysis ; Synchronous motors ; Systems stability ; unknown input observer</subject><ispartof>IEEE access, 2022, Vol.10, p.82580-82595</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-598ed2f2915dbb25e4a931b4eec61b883c4e663a5496deb3d9d4413a6869d0f93</cites><orcidid>0000-0002-3242-2561 ; 0000-0002-6116-5429 ; 0000-0003-1639-748X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9840364$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Sun, Qingle</creatorcontrib><creatorcontrib>Wang, Zhifu</creatorcontrib><creatorcontrib>Wang, Zeshang</creatorcontrib><creatorcontrib>Hao, Wenmei</creatorcontrib><title>Design and Implementation of LCL Filter-Based Electric Machine Emulator With Disturbance Compensation</title><title>IEEE access</title><addtitle>Access</addtitle><description>The electric machine emulator (EME), using digital simulation and power electronics to emulate the characteristics of actual machines, can greatly accelerate the testing of electric drives. However, most existing EMEs are based on typical L filter and linear controller, which causes control conflicts and bandwidth limitation. To address this issue, this paper presents an EME based on LCL filter with passive damping for a three-phase permanent magnet synchronous motor. To improve the dynamic emulating accuracy, a dual closed-loop deadbeat predictive current control algorithm is proposed, which is computationally efficient and easy to implement. The system stability is analyzed in the discrete domain, and the parameter constraints of the filter are obtained. Then, two unknown input observers are designed to compensate for the disturbance currents and voltages caused by modeling errors. Moreover, instead of the empirical method, a theoretical one considering the harmonic suppression, bandwidth, stability and resonance is presented for filter design. Finally, the performance of the proposed EME is validated through simulation and experimental results under various conditions such as machine start-up, torque step change, and speed reversal.</description><subject>Algorithms</subject><subject>Bandwidth</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Damping</subject><subject>Digital simulation</subject><subject>dual closed-loop deadbeat predictive current control</subject><subject>Electric drives</subject><subject>Electric machine emulator (EME)</subject><subject>Empirical analysis</subject><subject>Emulators</subject><subject>Filter design (mathematics)</subject><subject>Heuristic algorithms</subject><subject>Information filters</subject><subject>LCL filter</subject><subject>Mathematical models</subject><subject>Permanent magnets</subject><subject>Power harmonic filters</subject><subject>Predictive control</subject><subject>Robustness</subject><subject>Rotors</subject><subject>Stability analysis</subject><subject>Synchronous motors</subject><subject>Systems stability</subject><subject>unknown input observer</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNaWFhjS_IBdBz95KGkkrHVNn0y5s6SEtPQpZGidabGsraQ_993HiEDqXGR7vY-A1zTWjG8ao-XLTdbv7-w2nnG-AGUGlfNdccKZMCxLU-__uj81VKUe6jF4gub1o8BZLfJiJmwPZT6cRJ5yrqzHNJA3k0B3IXRwr5varKxjIbkRfc_Tkh_OPcUaym86jqymTP7E-kttY6jn3bvZIujSdcC4vXp-aD4MbC1697svm993uV_e9Pfz8tu9uDq0HqWsrjcbAB26YDH3PJQpngPUC0SvWaw1eoFLgpDAqYA_BBCEYOKWVCXQwcNnsV9-Q3NGecpxc_meTi_YFSPnBulyjH9EqMAOHoIJyXAj0BpnTTAy-R7bk8MXr8-p1yunvGUu1x3TO8_K-5VsKAvSWy4UFK8vnVErG4S2VUftcj13rsc_12Nd6FtX1qoqI-KYwWlBQAp4Atd6LUA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Sun, Qingle</creator><creator>Wang, Zhifu</creator><creator>Wang, Zeshang</creator><creator>Hao, Wenmei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3242-2561</orcidid><orcidid>https://orcid.org/0000-0002-6116-5429</orcidid><orcidid>https://orcid.org/0000-0003-1639-748X</orcidid></search><sort><creationdate>2022</creationdate><title>Design and Implementation of LCL Filter-Based Electric Machine Emulator With Disturbance Compensation</title><author>Sun, Qingle ; Wang, Zhifu ; Wang, Zeshang ; Hao, Wenmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-598ed2f2915dbb25e4a931b4eec61b883c4e663a5496deb3d9d4413a6869d0f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bandwidth</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Damping</topic><topic>Digital simulation</topic><topic>dual closed-loop deadbeat predictive current control</topic><topic>Electric drives</topic><topic>Electric machine emulator (EME)</topic><topic>Empirical analysis</topic><topic>Emulators</topic><topic>Filter design (mathematics)</topic><topic>Heuristic algorithms</topic><topic>Information filters</topic><topic>LCL filter</topic><topic>Mathematical models</topic><topic>Permanent magnets</topic><topic>Power harmonic filters</topic><topic>Predictive control</topic><topic>Robustness</topic><topic>Rotors</topic><topic>Stability analysis</topic><topic>Synchronous motors</topic><topic>Systems stability</topic><topic>unknown input observer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Qingle</creatorcontrib><creatorcontrib>Wang, Zhifu</creatorcontrib><creatorcontrib>Wang, Zeshang</creatorcontrib><creatorcontrib>Hao, Wenmei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Qingle</au><au>Wang, Zhifu</au><au>Wang, Zeshang</au><au>Hao, Wenmei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Implementation of LCL Filter-Based Electric Machine Emulator With Disturbance Compensation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>82580</spage><epage>82595</epage><pages>82580-82595</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The electric machine emulator (EME), using digital simulation and power electronics to emulate the characteristics of actual machines, can greatly accelerate the testing of electric drives. However, most existing EMEs are based on typical L filter and linear controller, which causes control conflicts and bandwidth limitation. To address this issue, this paper presents an EME based on LCL filter with passive damping for a three-phase permanent magnet synchronous motor. To improve the dynamic emulating accuracy, a dual closed-loop deadbeat predictive current control algorithm is proposed, which is computationally efficient and easy to implement. The system stability is analyzed in the discrete domain, and the parameter constraints of the filter are obtained. Then, two unknown input observers are designed to compensate for the disturbance currents and voltages caused by modeling errors. Moreover, instead of the empirical method, a theoretical one considering the harmonic suppression, bandwidth, stability and resonance is presented for filter design. Finally, the performance of the proposed EME is validated through simulation and experimental results under various conditions such as machine start-up, torque step change, and speed reversal.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3194055</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3242-2561</orcidid><orcidid>https://orcid.org/0000-0002-6116-5429</orcidid><orcidid>https://orcid.org/0000-0003-1639-748X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.82580-82595 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2703438725 |
source | IEEE Open Access Journals |
subjects | Algorithms Bandwidth Control algorithms Control theory Damping Digital simulation dual closed-loop deadbeat predictive current control Electric drives Electric machine emulator (EME) Empirical analysis Emulators Filter design (mathematics) Heuristic algorithms Information filters LCL filter Mathematical models Permanent magnets Power harmonic filters Predictive control Robustness Rotors Stability analysis Synchronous motors Systems stability unknown input observer |
title | Design and Implementation of LCL Filter-Based Electric Machine Emulator With Disturbance Compensation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A27%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Implementation%20of%20LCL%20Filter-Based%20Electric%20Machine%20Emulator%20With%20Disturbance%20Compensation&rft.jtitle=IEEE%20access&rft.au=Sun,%20Qingle&rft.date=2022&rft.volume=10&rft.spage=82580&rft.epage=82595&rft.pages=82580-82595&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3194055&rft_dat=%3Cproquest_doaj_%3E2703438725%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-598ed2f2915dbb25e4a931b4eec61b883c4e663a5496deb3d9d4413a6869d0f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2703438725&rft_id=info:pmid/&rft_ieee_id=9840364&rfr_iscdi=true |