Loading…

Full waveform vibration and shock measurement tool for measurement-while-drilling

The bottom hole assembly during the drilling process is prone to fatigue and damage under the influence of alternating stress, particularly the drill bit and bottom part of the bottom hole assembly. The vibration and shock data are normally used to estimate the working status of the drill collars an...

Full description

Saved in:
Bibliographic Details
Published in:AIP advances 2022-08, Vol.12 (8), p.085114-085114-8
Main Authors: Song, Sixuan, Zhang, Tianxin, Wang, Zhongxing, Pei, Renzhong, Yan, Shichu, Chen, Kai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The bottom hole assembly during the drilling process is prone to fatigue and damage under the influence of alternating stress, particularly the drill bit and bottom part of the bottom hole assembly. The vibration and shock data are normally used to estimate the working status of the drill collars and for data post-processing of a particular logging method. The recent developments in drilling technology have increased investigations into continuous vibration and shock information measurement. However, existing tools store only the results of signal processing and cannot determine the raw full waveform; thus, they cannot be used to extract comprehensive information. Therefore, we proposed a novel tool for measurement-while-drilling, equipped with triaxial vibration and shock sensors. The tool can record the full waveform of six channels and use a large-capacity NAND flash to store the recorded raw full waveform. We performed laboratory and field tests to verify the stability and reliability of the tool at temperatures up to 150 °C to support operations in deep downhole environments. Furthermore, the tool can aid in effectively analyzing actual vibration and shock data to simulate a downhole test environment.
ISSN:2158-3226
2158-3226
DOI:10.1063/5.0090505