Loading…
Modified Empirical Model of Surface Dielectric Barrier Discharge Plasma Actuator in Flow Control
AbstractIn this paper, an empirical model of surface dielectric barrier discharge (SDBD) plasma actuator with good prediction performance is proposed based on experimental data. Due to the complex electric field and unstable discharge process of asymmetric dielectric barrier discharge (DBD) plasma a...
Saved in:
Published in: | Journal of aerospace engineering 2022-11, Vol.35 (6) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a337t-20ec77f341878ad6e78392da335f88ceac5717bf735efb8ee31221c50dddecdf3 |
---|---|
cites | cdi_FETCH-LOGICAL-a337t-20ec77f341878ad6e78392da335f88ceac5717bf735efb8ee31221c50dddecdf3 |
container_end_page | |
container_issue | 6 |
container_start_page | |
container_title | Journal of aerospace engineering |
container_volume | 35 |
creator | Fu, Yunhao Lyu, Yongxi Shi, Jingping Wang, Xiaoguang |
description | AbstractIn this paper, an empirical model of surface dielectric barrier discharge (SDBD) plasma actuator with good prediction performance is proposed based on experimental data. Due to the complex electric field and unstable discharge process of asymmetric dielectric barrier discharge (DBD) plasma actuator, a reliable model used to simulate the macro flow is difficult to develop with small calculation costs according to the first principle. Based on summarizing experimental data and improving other semiempirical models, a new empirical thrust estimation model is developed. The model considers six main parameters affecting the actuator thrust, including voltage amplitude, frequency, upper electrode thickness, lower electrode width, and relative permittivity and thickness of the dielectric. The estimated thrust value is inserted into the Navier–Stokes equation as a body-force source term and then the equation is solved by the computational fluid dynamics (CFD) software FLUENT using the finite volume method combined with the Spalart–Allmaras turbulence model. The body-force region is specified by an empirical body-force distribution function based on velocity information. Grid dependence of the model is verified by three meshes with different resolutions. The effectiveness of the empirical model and body-force distribution is verified by different experimental cases. Thus, the model proposed in this paper can properly predict the thrust value and velocity field generated by the DBD plasma actuator with a small computation cost. |
doi_str_mv | 10.1061/(ASCE)AS.1943-5525.0001474 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2703710016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2703710016</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-20ec77f341878ad6e78392da335f88ceac5717bf735efb8ee31221c50dddecdf3</originalsourceid><addsrcrecordid>eNp1kEFPwzAMhSMEEmPwHyK4wKEjadqm41bKBkhDIA3OIUscyNQtI2mF-Pek2oATF1t6fs-WP4ROKRlRUtDL82peTy6q-YiOM5bkeZqPCCE049keGvxq-2hAyjFLKEvpIToKYdl7inE6QK8PTltjQePJamO9VbLBUYIGO4PnnTdSAb6x0IBq4xRfS-8t-CgF9S79G-CnRoaVxJVqO9k6j-0aTxv3iWu3br1rjtGBkU2Ak10fopfp5Lm-S2aPt_d1NUskY7xNUgKKc8MyWvJS6gJ4ycapjsPclKUCqXJO-cJwloNZlACMpilVOdFag9KGDdHZdu_Gu48OQiuWrvPreFKknDBO48tFdF1tXcq7EDwYsfF2Jf2XoET0RIXoicYienqipyd2RGO42IZlUPC3_if5f_AbMmx6yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703710016</pqid></control><display><type>article</type><title>Modified Empirical Model of Surface Dielectric Barrier Discharge Plasma Actuator in Flow Control</title><source>American Society Of Civil Engineers ASCE Journals</source><creator>Fu, Yunhao ; Lyu, Yongxi ; Shi, Jingping ; Wang, Xiaoguang</creator><creatorcontrib>Fu, Yunhao ; Lyu, Yongxi ; Shi, Jingping ; Wang, Xiaoguang</creatorcontrib><description>AbstractIn this paper, an empirical model of surface dielectric barrier discharge (SDBD) plasma actuator with good prediction performance is proposed based on experimental data. Due to the complex electric field and unstable discharge process of asymmetric dielectric barrier discharge (DBD) plasma actuator, a reliable model used to simulate the macro flow is difficult to develop with small calculation costs according to the first principle. Based on summarizing experimental data and improving other semiempirical models, a new empirical thrust estimation model is developed. The model considers six main parameters affecting the actuator thrust, including voltage amplitude, frequency, upper electrode thickness, lower electrode width, and relative permittivity and thickness of the dielectric. The estimated thrust value is inserted into the Navier–Stokes equation as a body-force source term and then the equation is solved by the computational fluid dynamics (CFD) software FLUENT using the finite volume method combined with the Spalart–Allmaras turbulence model. The body-force region is specified by an empirical body-force distribution function based on velocity information. Grid dependence of the model is verified by three meshes with different resolutions. The effectiveness of the empirical model and body-force distribution is verified by different experimental cases. Thus, the model proposed in this paper can properly predict the thrust value and velocity field generated by the DBD plasma actuator with a small computation cost.</description><identifier>ISSN: 0893-1321</identifier><identifier>EISSN: 1943-5525</identifier><identifier>DOI: 10.1061/(ASCE)AS.1943-5525.0001474</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Computational fluid dynamics ; Dielectric barrier discharge ; Dielectrics ; Distribution functions ; Electric fields ; Electrodes ; Finite volume method ; First principles ; Flow control ; Fluid flow ; Force distribution ; Mathematical models ; Permittivity ; Plasma ; Spalart-Allmaras turbulence model ; Technical Papers ; Thickness ; Thrust ; Turbulence models ; Velocity distribution</subject><ispartof>Journal of aerospace engineering, 2022-11, Vol.35 (6)</ispartof><rights>2022 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a337t-20ec77f341878ad6e78392da335f88ceac5717bf735efb8ee31221c50dddecdf3</citedby><cites>FETCH-LOGICAL-a337t-20ec77f341878ad6e78392da335f88ceac5717bf735efb8ee31221c50dddecdf3</cites><orcidid>0000-0001-8912-3418 ; 0000-0001-8803-3285 ; 0000-0001-5700-2638 ; 0000-0003-4108-7934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)AS.1943-5525.0001474$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0001474$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,3252,10068,27924,27925,76191,76199</link.rule.ids></links><search><creatorcontrib>Fu, Yunhao</creatorcontrib><creatorcontrib>Lyu, Yongxi</creatorcontrib><creatorcontrib>Shi, Jingping</creatorcontrib><creatorcontrib>Wang, Xiaoguang</creatorcontrib><title>Modified Empirical Model of Surface Dielectric Barrier Discharge Plasma Actuator in Flow Control</title><title>Journal of aerospace engineering</title><description>AbstractIn this paper, an empirical model of surface dielectric barrier discharge (SDBD) plasma actuator with good prediction performance is proposed based on experimental data. Due to the complex electric field and unstable discharge process of asymmetric dielectric barrier discharge (DBD) plasma actuator, a reliable model used to simulate the macro flow is difficult to develop with small calculation costs according to the first principle. Based on summarizing experimental data and improving other semiempirical models, a new empirical thrust estimation model is developed. The model considers six main parameters affecting the actuator thrust, including voltage amplitude, frequency, upper electrode thickness, lower electrode width, and relative permittivity and thickness of the dielectric. The estimated thrust value is inserted into the Navier–Stokes equation as a body-force source term and then the equation is solved by the computational fluid dynamics (CFD) software FLUENT using the finite volume method combined with the Spalart–Allmaras turbulence model. The body-force region is specified by an empirical body-force distribution function based on velocity information. Grid dependence of the model is verified by three meshes with different resolutions. The effectiveness of the empirical model and body-force distribution is verified by different experimental cases. Thus, the model proposed in this paper can properly predict the thrust value and velocity field generated by the DBD plasma actuator with a small computation cost.</description><subject>Computational fluid dynamics</subject><subject>Dielectric barrier discharge</subject><subject>Dielectrics</subject><subject>Distribution functions</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>Finite volume method</subject><subject>First principles</subject><subject>Flow control</subject><subject>Fluid flow</subject><subject>Force distribution</subject><subject>Mathematical models</subject><subject>Permittivity</subject><subject>Plasma</subject><subject>Spalart-Allmaras turbulence model</subject><subject>Technical Papers</subject><subject>Thickness</subject><subject>Thrust</subject><subject>Turbulence models</subject><subject>Velocity distribution</subject><issn>0893-1321</issn><issn>1943-5525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPwzAMhSMEEmPwHyK4wKEjadqm41bKBkhDIA3OIUscyNQtI2mF-Pek2oATF1t6fs-WP4ROKRlRUtDL82peTy6q-YiOM5bkeZqPCCE049keGvxq-2hAyjFLKEvpIToKYdl7inE6QK8PTltjQePJamO9VbLBUYIGO4PnnTdSAb6x0IBq4xRfS-8t-CgF9S79G-CnRoaVxJVqO9k6j-0aTxv3iWu3br1rjtGBkU2Ak10fopfp5Lm-S2aPt_d1NUskY7xNUgKKc8MyWvJS6gJ4ycapjsPclKUCqXJO-cJwloNZlACMpilVOdFag9KGDdHZdu_Gu48OQiuWrvPreFKknDBO48tFdF1tXcq7EDwYsfF2Jf2XoET0RIXoicYienqipyd2RGO42IZlUPC3_if5f_AbMmx6yg</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Fu, Yunhao</creator><creator>Lyu, Yongxi</creator><creator>Shi, Jingping</creator><creator>Wang, Xiaoguang</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8912-3418</orcidid><orcidid>https://orcid.org/0000-0001-8803-3285</orcidid><orcidid>https://orcid.org/0000-0001-5700-2638</orcidid><orcidid>https://orcid.org/0000-0003-4108-7934</orcidid></search><sort><creationdate>20221101</creationdate><title>Modified Empirical Model of Surface Dielectric Barrier Discharge Plasma Actuator in Flow Control</title><author>Fu, Yunhao ; Lyu, Yongxi ; Shi, Jingping ; Wang, Xiaoguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-20ec77f341878ad6e78392da335f88ceac5717bf735efb8ee31221c50dddecdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational fluid dynamics</topic><topic>Dielectric barrier discharge</topic><topic>Dielectrics</topic><topic>Distribution functions</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>Finite volume method</topic><topic>First principles</topic><topic>Flow control</topic><topic>Fluid flow</topic><topic>Force distribution</topic><topic>Mathematical models</topic><topic>Permittivity</topic><topic>Plasma</topic><topic>Spalart-Allmaras turbulence model</topic><topic>Technical Papers</topic><topic>Thickness</topic><topic>Thrust</topic><topic>Turbulence models</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Yunhao</creatorcontrib><creatorcontrib>Lyu, Yongxi</creatorcontrib><creatorcontrib>Shi, Jingping</creatorcontrib><creatorcontrib>Wang, Xiaoguang</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Yunhao</au><au>Lyu, Yongxi</au><au>Shi, Jingping</au><au>Wang, Xiaoguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified Empirical Model of Surface Dielectric Barrier Discharge Plasma Actuator in Flow Control</atitle><jtitle>Journal of aerospace engineering</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>35</volume><issue>6</issue><issn>0893-1321</issn><eissn>1943-5525</eissn><abstract>AbstractIn this paper, an empirical model of surface dielectric barrier discharge (SDBD) plasma actuator with good prediction performance is proposed based on experimental data. Due to the complex electric field and unstable discharge process of asymmetric dielectric barrier discharge (DBD) plasma actuator, a reliable model used to simulate the macro flow is difficult to develop with small calculation costs according to the first principle. Based on summarizing experimental data and improving other semiempirical models, a new empirical thrust estimation model is developed. The model considers six main parameters affecting the actuator thrust, including voltage amplitude, frequency, upper electrode thickness, lower electrode width, and relative permittivity and thickness of the dielectric. The estimated thrust value is inserted into the Navier–Stokes equation as a body-force source term and then the equation is solved by the computational fluid dynamics (CFD) software FLUENT using the finite volume method combined with the Spalart–Allmaras turbulence model. The body-force region is specified by an empirical body-force distribution function based on velocity information. Grid dependence of the model is verified by three meshes with different resolutions. The effectiveness of the empirical model and body-force distribution is verified by different experimental cases. Thus, the model proposed in this paper can properly predict the thrust value and velocity field generated by the DBD plasma actuator with a small computation cost.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)AS.1943-5525.0001474</doi><orcidid>https://orcid.org/0000-0001-8912-3418</orcidid><orcidid>https://orcid.org/0000-0001-8803-3285</orcidid><orcidid>https://orcid.org/0000-0001-5700-2638</orcidid><orcidid>https://orcid.org/0000-0003-4108-7934</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-1321 |
ispartof | Journal of aerospace engineering, 2022-11, Vol.35 (6) |
issn | 0893-1321 1943-5525 |
language | eng |
recordid | cdi_proquest_journals_2703710016 |
source | American Society Of Civil Engineers ASCE Journals |
subjects | Computational fluid dynamics Dielectric barrier discharge Dielectrics Distribution functions Electric fields Electrodes Finite volume method First principles Flow control Fluid flow Force distribution Mathematical models Permittivity Plasma Spalart-Allmaras turbulence model Technical Papers Thickness Thrust Turbulence models Velocity distribution |
title | Modified Empirical Model of Surface Dielectric Barrier Discharge Plasma Actuator in Flow Control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A29%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20Empirical%20Model%20of%20Surface%20Dielectric%20Barrier%20Discharge%20Plasma%20Actuator%20in%20Flow%20Control&rft.jtitle=Journal%20of%20aerospace%20engineering&rft.au=Fu,%20Yunhao&rft.date=2022-11-01&rft.volume=35&rft.issue=6&rft.issn=0893-1321&rft.eissn=1943-5525&rft_id=info:doi/10.1061/(ASCE)AS.1943-5525.0001474&rft_dat=%3Cproquest_cross%3E2703710016%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a337t-20ec77f341878ad6e78392da335f88ceac5717bf735efb8ee31221c50dddecdf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2703710016&rft_id=info:pmid/&rfr_iscdi=true |