Loading…

Modified Empirical Model of Surface Dielectric Barrier Discharge Plasma Actuator in Flow Control

AbstractIn this paper, an empirical model of surface dielectric barrier discharge (SDBD) plasma actuator with good prediction performance is proposed based on experimental data. Due to the complex electric field and unstable discharge process of asymmetric dielectric barrier discharge (DBD) plasma a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of aerospace engineering 2022-11, Vol.35 (6)
Main Authors: Fu, Yunhao, Lyu, Yongxi, Shi, Jingping, Wang, Xiaoguang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a337t-20ec77f341878ad6e78392da335f88ceac5717bf735efb8ee31221c50dddecdf3
cites cdi_FETCH-LOGICAL-a337t-20ec77f341878ad6e78392da335f88ceac5717bf735efb8ee31221c50dddecdf3
container_end_page
container_issue 6
container_start_page
container_title Journal of aerospace engineering
container_volume 35
creator Fu, Yunhao
Lyu, Yongxi
Shi, Jingping
Wang, Xiaoguang
description AbstractIn this paper, an empirical model of surface dielectric barrier discharge (SDBD) plasma actuator with good prediction performance is proposed based on experimental data. Due to the complex electric field and unstable discharge process of asymmetric dielectric barrier discharge (DBD) plasma actuator, a reliable model used to simulate the macro flow is difficult to develop with small calculation costs according to the first principle. Based on summarizing experimental data and improving other semiempirical models, a new empirical thrust estimation model is developed. The model considers six main parameters affecting the actuator thrust, including voltage amplitude, frequency, upper electrode thickness, lower electrode width, and relative permittivity and thickness of the dielectric. The estimated thrust value is inserted into the Navier–Stokes equation as a body-force source term and then the equation is solved by the computational fluid dynamics (CFD) software FLUENT using the finite volume method combined with the Spalart–Allmaras turbulence model. The body-force region is specified by an empirical body-force distribution function based on velocity information. Grid dependence of the model is verified by three meshes with different resolutions. The effectiveness of the empirical model and body-force distribution is verified by different experimental cases. Thus, the model proposed in this paper can properly predict the thrust value and velocity field generated by the DBD plasma actuator with a small computation cost.
doi_str_mv 10.1061/(ASCE)AS.1943-5525.0001474
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2703710016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2703710016</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-20ec77f341878ad6e78392da335f88ceac5717bf735efb8ee31221c50dddecdf3</originalsourceid><addsrcrecordid>eNp1kEFPwzAMhSMEEmPwHyK4wKEjadqm41bKBkhDIA3OIUscyNQtI2mF-Pek2oATF1t6fs-WP4ROKRlRUtDL82peTy6q-YiOM5bkeZqPCCE049keGvxq-2hAyjFLKEvpIToKYdl7inE6QK8PTltjQePJamO9VbLBUYIGO4PnnTdSAb6x0IBq4xRfS-8t-CgF9S79G-CnRoaVxJVqO9k6j-0aTxv3iWu3br1rjtGBkU2Ak10fopfp5Lm-S2aPt_d1NUskY7xNUgKKc8MyWvJS6gJ4ycapjsPclKUCqXJO-cJwloNZlACMpilVOdFag9KGDdHZdu_Gu48OQiuWrvPreFKknDBO48tFdF1tXcq7EDwYsfF2Jf2XoET0RIXoicYienqipyd2RGO42IZlUPC3_if5f_AbMmx6yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703710016</pqid></control><display><type>article</type><title>Modified Empirical Model of Surface Dielectric Barrier Discharge Plasma Actuator in Flow Control</title><source>American Society Of Civil Engineers ASCE Journals</source><creator>Fu, Yunhao ; Lyu, Yongxi ; Shi, Jingping ; Wang, Xiaoguang</creator><creatorcontrib>Fu, Yunhao ; Lyu, Yongxi ; Shi, Jingping ; Wang, Xiaoguang</creatorcontrib><description>AbstractIn this paper, an empirical model of surface dielectric barrier discharge (SDBD) plasma actuator with good prediction performance is proposed based on experimental data. Due to the complex electric field and unstable discharge process of asymmetric dielectric barrier discharge (DBD) plasma actuator, a reliable model used to simulate the macro flow is difficult to develop with small calculation costs according to the first principle. Based on summarizing experimental data and improving other semiempirical models, a new empirical thrust estimation model is developed. The model considers six main parameters affecting the actuator thrust, including voltage amplitude, frequency, upper electrode thickness, lower electrode width, and relative permittivity and thickness of the dielectric. The estimated thrust value is inserted into the Navier–Stokes equation as a body-force source term and then the equation is solved by the computational fluid dynamics (CFD) software FLUENT using the finite volume method combined with the Spalart–Allmaras turbulence model. The body-force region is specified by an empirical body-force distribution function based on velocity information. Grid dependence of the model is verified by three meshes with different resolutions. The effectiveness of the empirical model and body-force distribution is verified by different experimental cases. Thus, the model proposed in this paper can properly predict the thrust value and velocity field generated by the DBD plasma actuator with a small computation cost.</description><identifier>ISSN: 0893-1321</identifier><identifier>EISSN: 1943-5525</identifier><identifier>DOI: 10.1061/(ASCE)AS.1943-5525.0001474</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Computational fluid dynamics ; Dielectric barrier discharge ; Dielectrics ; Distribution functions ; Electric fields ; Electrodes ; Finite volume method ; First principles ; Flow control ; Fluid flow ; Force distribution ; Mathematical models ; Permittivity ; Plasma ; Spalart-Allmaras turbulence model ; Technical Papers ; Thickness ; Thrust ; Turbulence models ; Velocity distribution</subject><ispartof>Journal of aerospace engineering, 2022-11, Vol.35 (6)</ispartof><rights>2022 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a337t-20ec77f341878ad6e78392da335f88ceac5717bf735efb8ee31221c50dddecdf3</citedby><cites>FETCH-LOGICAL-a337t-20ec77f341878ad6e78392da335f88ceac5717bf735efb8ee31221c50dddecdf3</cites><orcidid>0000-0001-8912-3418 ; 0000-0001-8803-3285 ; 0000-0001-5700-2638 ; 0000-0003-4108-7934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)AS.1943-5525.0001474$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0001474$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,3252,10068,27924,27925,76191,76199</link.rule.ids></links><search><creatorcontrib>Fu, Yunhao</creatorcontrib><creatorcontrib>Lyu, Yongxi</creatorcontrib><creatorcontrib>Shi, Jingping</creatorcontrib><creatorcontrib>Wang, Xiaoguang</creatorcontrib><title>Modified Empirical Model of Surface Dielectric Barrier Discharge Plasma Actuator in Flow Control</title><title>Journal of aerospace engineering</title><description>AbstractIn this paper, an empirical model of surface dielectric barrier discharge (SDBD) plasma actuator with good prediction performance is proposed based on experimental data. Due to the complex electric field and unstable discharge process of asymmetric dielectric barrier discharge (DBD) plasma actuator, a reliable model used to simulate the macro flow is difficult to develop with small calculation costs according to the first principle. Based on summarizing experimental data and improving other semiempirical models, a new empirical thrust estimation model is developed. The model considers six main parameters affecting the actuator thrust, including voltage amplitude, frequency, upper electrode thickness, lower electrode width, and relative permittivity and thickness of the dielectric. The estimated thrust value is inserted into the Navier–Stokes equation as a body-force source term and then the equation is solved by the computational fluid dynamics (CFD) software FLUENT using the finite volume method combined with the Spalart–Allmaras turbulence model. The body-force region is specified by an empirical body-force distribution function based on velocity information. Grid dependence of the model is verified by three meshes with different resolutions. The effectiveness of the empirical model and body-force distribution is verified by different experimental cases. Thus, the model proposed in this paper can properly predict the thrust value and velocity field generated by the DBD plasma actuator with a small computation cost.</description><subject>Computational fluid dynamics</subject><subject>Dielectric barrier discharge</subject><subject>Dielectrics</subject><subject>Distribution functions</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>Finite volume method</subject><subject>First principles</subject><subject>Flow control</subject><subject>Fluid flow</subject><subject>Force distribution</subject><subject>Mathematical models</subject><subject>Permittivity</subject><subject>Plasma</subject><subject>Spalart-Allmaras turbulence model</subject><subject>Technical Papers</subject><subject>Thickness</subject><subject>Thrust</subject><subject>Turbulence models</subject><subject>Velocity distribution</subject><issn>0893-1321</issn><issn>1943-5525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPwzAMhSMEEmPwHyK4wKEjadqm41bKBkhDIA3OIUscyNQtI2mF-Pek2oATF1t6fs-WP4ROKRlRUtDL82peTy6q-YiOM5bkeZqPCCE049keGvxq-2hAyjFLKEvpIToKYdl7inE6QK8PTltjQePJamO9VbLBUYIGO4PnnTdSAb6x0IBq4xRfS-8t-CgF9S79G-CnRoaVxJVqO9k6j-0aTxv3iWu3br1rjtGBkU2Ak10fopfp5Lm-S2aPt_d1NUskY7xNUgKKc8MyWvJS6gJ4ycapjsPclKUCqXJO-cJwloNZlACMpilVOdFag9KGDdHZdu_Gu48OQiuWrvPreFKknDBO48tFdF1tXcq7EDwYsfF2Jf2XoET0RIXoicYienqipyd2RGO42IZlUPC3_if5f_AbMmx6yg</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Fu, Yunhao</creator><creator>Lyu, Yongxi</creator><creator>Shi, Jingping</creator><creator>Wang, Xiaoguang</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8912-3418</orcidid><orcidid>https://orcid.org/0000-0001-8803-3285</orcidid><orcidid>https://orcid.org/0000-0001-5700-2638</orcidid><orcidid>https://orcid.org/0000-0003-4108-7934</orcidid></search><sort><creationdate>20221101</creationdate><title>Modified Empirical Model of Surface Dielectric Barrier Discharge Plasma Actuator in Flow Control</title><author>Fu, Yunhao ; Lyu, Yongxi ; Shi, Jingping ; Wang, Xiaoguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-20ec77f341878ad6e78392da335f88ceac5717bf735efb8ee31221c50dddecdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational fluid dynamics</topic><topic>Dielectric barrier discharge</topic><topic>Dielectrics</topic><topic>Distribution functions</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>Finite volume method</topic><topic>First principles</topic><topic>Flow control</topic><topic>Fluid flow</topic><topic>Force distribution</topic><topic>Mathematical models</topic><topic>Permittivity</topic><topic>Plasma</topic><topic>Spalart-Allmaras turbulence model</topic><topic>Technical Papers</topic><topic>Thickness</topic><topic>Thrust</topic><topic>Turbulence models</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Yunhao</creatorcontrib><creatorcontrib>Lyu, Yongxi</creatorcontrib><creatorcontrib>Shi, Jingping</creatorcontrib><creatorcontrib>Wang, Xiaoguang</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Yunhao</au><au>Lyu, Yongxi</au><au>Shi, Jingping</au><au>Wang, Xiaoguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified Empirical Model of Surface Dielectric Barrier Discharge Plasma Actuator in Flow Control</atitle><jtitle>Journal of aerospace engineering</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>35</volume><issue>6</issue><issn>0893-1321</issn><eissn>1943-5525</eissn><abstract>AbstractIn this paper, an empirical model of surface dielectric barrier discharge (SDBD) plasma actuator with good prediction performance is proposed based on experimental data. Due to the complex electric field and unstable discharge process of asymmetric dielectric barrier discharge (DBD) plasma actuator, a reliable model used to simulate the macro flow is difficult to develop with small calculation costs according to the first principle. Based on summarizing experimental data and improving other semiempirical models, a new empirical thrust estimation model is developed. The model considers six main parameters affecting the actuator thrust, including voltage amplitude, frequency, upper electrode thickness, lower electrode width, and relative permittivity and thickness of the dielectric. The estimated thrust value is inserted into the Navier–Stokes equation as a body-force source term and then the equation is solved by the computational fluid dynamics (CFD) software FLUENT using the finite volume method combined with the Spalart–Allmaras turbulence model. The body-force region is specified by an empirical body-force distribution function based on velocity information. Grid dependence of the model is verified by three meshes with different resolutions. The effectiveness of the empirical model and body-force distribution is verified by different experimental cases. Thus, the model proposed in this paper can properly predict the thrust value and velocity field generated by the DBD plasma actuator with a small computation cost.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)AS.1943-5525.0001474</doi><orcidid>https://orcid.org/0000-0001-8912-3418</orcidid><orcidid>https://orcid.org/0000-0001-8803-3285</orcidid><orcidid>https://orcid.org/0000-0001-5700-2638</orcidid><orcidid>https://orcid.org/0000-0003-4108-7934</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-1321
ispartof Journal of aerospace engineering, 2022-11, Vol.35 (6)
issn 0893-1321
1943-5525
language eng
recordid cdi_proquest_journals_2703710016
source American Society Of Civil Engineers ASCE Journals
subjects Computational fluid dynamics
Dielectric barrier discharge
Dielectrics
Distribution functions
Electric fields
Electrodes
Finite volume method
First principles
Flow control
Fluid flow
Force distribution
Mathematical models
Permittivity
Plasma
Spalart-Allmaras turbulence model
Technical Papers
Thickness
Thrust
Turbulence models
Velocity distribution
title Modified Empirical Model of Surface Dielectric Barrier Discharge Plasma Actuator in Flow Control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A29%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20Empirical%20Model%20of%20Surface%20Dielectric%20Barrier%20Discharge%20Plasma%20Actuator%20in%20Flow%20Control&rft.jtitle=Journal%20of%20aerospace%20engineering&rft.au=Fu,%20Yunhao&rft.date=2022-11-01&rft.volume=35&rft.issue=6&rft.issn=0893-1321&rft.eissn=1943-5525&rft_id=info:doi/10.1061/(ASCE)AS.1943-5525.0001474&rft_dat=%3Cproquest_cross%3E2703710016%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a337t-20ec77f341878ad6e78392da335f88ceac5717bf735efb8ee31221c50dddecdf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2703710016&rft_id=info:pmid/&rfr_iscdi=true