Loading…

A Tendency Toward Alignment in Single-star Warm-Jupiter Systems

The distribution of spin–orbit angles for systems with wide-separation, tidally detached exoplanets offers a unique constraint on the prevalence of dynamically violent planetary evolution histories. Tidally detached planets provide a relatively unbiased view of the primordial stellar obliquity distr...

Full description

Saved in:
Bibliographic Details
Published in:The Astronomical journal 2022-09, Vol.164 (3), p.104
Main Authors: Rice, Malena, Wang, Songhu, Wang, Xian-Yu, Stefánsson, Guđmundur, Isaacson, Howard, Howard, Andrew W., Logsdon, Sarah E., Schweiker, Heidi, Dai, Fei, Brinkman, Casey, Giacalone, Steven, Holcomb, Rae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The distribution of spin–orbit angles for systems with wide-separation, tidally detached exoplanets offers a unique constraint on the prevalence of dynamically violent planetary evolution histories. Tidally detached planets provide a relatively unbiased view of the primordial stellar obliquity distribution, as they cannot tidally realign within the system lifetime. We present the third result from our Stellar Obliquities in Long-period Exoplanet Systems (SOLES) survey: a measurement of the Rossiter–McLaughlin effect across two transits of the tidally detached warm Jupiter TOI-1478 b with the WIYN/NEID and Keck/HIRES spectrographs, revealing a sky-projected spin–orbit angle λ = 6.2 − 5.5 + 5.9 ° . Combining this new measurement with the full set of archival obliquity measurements, including two previous constraints from the SOLES survey, we demonstrate that, in single-star systems, tidally detached warm Jupiters are preferentially more aligned than closer-orbiting hot Jupiters. This finding has two key implications: (1) planets in single-star systems tend to form within aligned protoplanetary disks, and (2) warm Jupiters form more quiescently than hot Jupiters, which, in single-star systems, are likely perturbed into a misaligned state through planet–planet interactions in the post-disk-dispersal phase. We also find that lower-mass Saturns span a wide range of spin–orbit angles, suggesting a prevalence of planet–planet scattering and/or secular mechanisms in these systems.
ISSN:0004-6256
1538-3881
DOI:10.3847/1538-3881/ac8153