Loading…

Rapid Text Retrieval and Analysis Supporting Latent Dirichlet Allocation Based on Probabilistic Models

Text mining, also known as text analysis, is the process of converting unstructured text data into meaningful and functional information. Text mining uses different AI technologies to automate data and generate valuable insights, allowing enterprises to make data-based decisions. Text mining enables...

Full description

Saved in:
Bibliographic Details
Published in:Mobile information systems 2022-08, Vol.2022, p.1-12
Main Authors: Gnanavel, S., Mani, Vinodhini, Sreekrishna, M., Amshavalli, R. S., Reta Gashu, Yomiyu, Duraimurugan, N., Srinivasa Rao, Namburi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c267t-db143ea2f13f12dbf226db7ffd616fc3435df7a6311c18db8dbe63646386e1273
cites cdi_FETCH-LOGICAL-c267t-db143ea2f13f12dbf226db7ffd616fc3435df7a6311c18db8dbe63646386e1273
container_end_page 12
container_issue
container_start_page 1
container_title Mobile information systems
container_volume 2022
creator Gnanavel, S.
Mani, Vinodhini
Sreekrishna, M.
Amshavalli, R. S.
Reta Gashu, Yomiyu
Duraimurugan, N.
Srinivasa Rao, Namburi
description Text mining, also known as text analysis, is the process of converting unstructured text data into meaningful and functional information. Text mining uses different AI technologies to automate data and generate valuable insights, allowing enterprises to make data-based decisions. Text mining enables the user to extract important content from text data sets. Text analysis encourages machine learning ability for research areas such as medical and pharmaceutical innovation fields. Apart from this, text analysis converts inaccessible data into a structured format, which can be used for further analysis. Text analysis emphasizes facts and relationships from large data sets. This information is extracted and converted into structured data for visualization, analysis, and integration as structured data and refines the information using machine-learning methods. Like most things related to Natural Language Processing, text mining can seem like a difficult concept to understand. But the fact is, it does not have to be. This research article will go through the basics of text mining, clarify its different methods and techniques, and make it easier to understand how it works. We implemented Latent Dirichlet Allocation techniques for mining the data from the data set; it works properly and will be in future development data mining techniques.
doi_str_mv 10.1155/2022/6028739
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2704754011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704754011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-db143ea2f13f12dbf226db7ffd616fc3435df7a6311c18db8dbe63646386e1273</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKs7f0DApY7NSyZJu6z1EypKrdDdkJkkNiXOjEmq9t87pV0LF95dHB7cg9A5kGsAzgeUUDoQhA4lGx2gHgwlz0aELw67zmWeEZCLY3QS44oQQRiXPWRnqnUaz81vwjOTgjPfymNVazyuld9EF_Hbum2bkFz9gacqmTrhWxdctfQm4bH3TaWSa2p8o6LRuCuvoSlV6byLyVX4udHGx1N0ZJWP5mx_--j9_m4-ecymLw9Pk_E0q6iQKdMl5MwoaoFZoLq0lApdSmu1AGErljOurVSCAVQw1GUXI5jIBRsKA1SyPrrY_W1D87U2MRWrZh26JbGgkuSS5wSgo652VBWaGIOxRRvcpwqbAkixNVlsTRZ7kx1-ucOXrtbqx_1P_wG43nOj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704754011</pqid></control><display><type>article</type><title>Rapid Text Retrieval and Analysis Supporting Latent Dirichlet Allocation Based on Probabilistic Models</title><source>Wiley-Blackwell Open Access Titles(OpenAccess)</source><creator>Gnanavel, S. ; Mani, Vinodhini ; Sreekrishna, M. ; Amshavalli, R. S. ; Reta Gashu, Yomiyu ; Duraimurugan, N. ; Srinivasa Rao, Namburi</creator><contributor>Kumar Reddy, M. Praveen ; M Praveen Kumar Reddy</contributor><creatorcontrib>Gnanavel, S. ; Mani, Vinodhini ; Sreekrishna, M. ; Amshavalli, R. S. ; Reta Gashu, Yomiyu ; Duraimurugan, N. ; Srinivasa Rao, Namburi ; Kumar Reddy, M. Praveen ; M Praveen Kumar Reddy</creatorcontrib><description>Text mining, also known as text analysis, is the process of converting unstructured text data into meaningful and functional information. Text mining uses different AI technologies to automate data and generate valuable insights, allowing enterprises to make data-based decisions. Text mining enables the user to extract important content from text data sets. Text analysis encourages machine learning ability for research areas such as medical and pharmaceutical innovation fields. Apart from this, text analysis converts inaccessible data into a structured format, which can be used for further analysis. Text analysis emphasizes facts and relationships from large data sets. This information is extracted and converted into structured data for visualization, analysis, and integration as structured data and refines the information using machine-learning methods. Like most things related to Natural Language Processing, text mining can seem like a difficult concept to understand. But the fact is, it does not have to be. This research article will go through the basics of text mining, clarify its different methods and techniques, and make it easier to understand how it works. We implemented Latent Dirichlet Allocation techniques for mining the data from the data set; it works properly and will be in future development data mining techniques.</description><identifier>ISSN: 1574-017X</identifier><identifier>EISSN: 1875-905X</identifier><identifier>DOI: 10.1155/2022/6028739</identifier><language>eng</language><publisher>Amsterdam: Hindawi</publisher><subject>Algorithms ; Big Data ; Blockchain ; Clustering ; Communication ; Data analysis ; Data mining ; Data models ; Data processing ; Datasets ; Dirichlet problem ; E-books ; Libraries ; Machine learning ; Medical research ; Natural language processing ; Optimization techniques ; Probabilistic models ; Search engines ; Semantics ; Sentiment analysis ; Social networks ; Social research ; Structured data ; Text analysis ; Unstructured data</subject><ispartof>Mobile information systems, 2022-08, Vol.2022, p.1-12</ispartof><rights>Copyright © 2022 S. Gnanavel et al.</rights><rights>Copyright © 2022 S. Gnanavel et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-db143ea2f13f12dbf226db7ffd616fc3435df7a6311c18db8dbe63646386e1273</citedby><cites>FETCH-LOGICAL-c267t-db143ea2f13f12dbf226db7ffd616fc3435df7a6311c18db8dbe63646386e1273</cites><orcidid>0000-0003-0701-503X ; 0000-0002-2970-2802 ; 0000-0003-1246-8762 ; 0000-0003-2344-0482 ; 0000-0002-9480-9868 ; 0000-0002-9525-9853 ; 0000-0001-8423-4768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Kumar Reddy, M. Praveen</contributor><contributor>M Praveen Kumar Reddy</contributor><creatorcontrib>Gnanavel, S.</creatorcontrib><creatorcontrib>Mani, Vinodhini</creatorcontrib><creatorcontrib>Sreekrishna, M.</creatorcontrib><creatorcontrib>Amshavalli, R. S.</creatorcontrib><creatorcontrib>Reta Gashu, Yomiyu</creatorcontrib><creatorcontrib>Duraimurugan, N.</creatorcontrib><creatorcontrib>Srinivasa Rao, Namburi</creatorcontrib><title>Rapid Text Retrieval and Analysis Supporting Latent Dirichlet Allocation Based on Probabilistic Models</title><title>Mobile information systems</title><description>Text mining, also known as text analysis, is the process of converting unstructured text data into meaningful and functional information. Text mining uses different AI technologies to automate data and generate valuable insights, allowing enterprises to make data-based decisions. Text mining enables the user to extract important content from text data sets. Text analysis encourages machine learning ability for research areas such as medical and pharmaceutical innovation fields. Apart from this, text analysis converts inaccessible data into a structured format, which can be used for further analysis. Text analysis emphasizes facts and relationships from large data sets. This information is extracted and converted into structured data for visualization, analysis, and integration as structured data and refines the information using machine-learning methods. Like most things related to Natural Language Processing, text mining can seem like a difficult concept to understand. But the fact is, it does not have to be. This research article will go through the basics of text mining, clarify its different methods and techniques, and make it easier to understand how it works. We implemented Latent Dirichlet Allocation techniques for mining the data from the data set; it works properly and will be in future development data mining techniques.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Blockchain</subject><subject>Clustering</subject><subject>Communication</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Data models</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Dirichlet problem</subject><subject>E-books</subject><subject>Libraries</subject><subject>Machine learning</subject><subject>Medical research</subject><subject>Natural language processing</subject><subject>Optimization techniques</subject><subject>Probabilistic models</subject><subject>Search engines</subject><subject>Semantics</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Social research</subject><subject>Structured data</subject><subject>Text analysis</subject><subject>Unstructured data</subject><issn>1574-017X</issn><issn>1875-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKs7f0DApY7NSyZJu6z1EypKrdDdkJkkNiXOjEmq9t87pV0LF95dHB7cg9A5kGsAzgeUUDoQhA4lGx2gHgwlz0aELw67zmWeEZCLY3QS44oQQRiXPWRnqnUaz81vwjOTgjPfymNVazyuld9EF_Hbum2bkFz9gacqmTrhWxdctfQm4bH3TaWSa2p8o6LRuCuvoSlV6byLyVX4udHGx1N0ZJWP5mx_--j9_m4-ecymLw9Pk_E0q6iQKdMl5MwoaoFZoLq0lApdSmu1AGErljOurVSCAVQw1GUXI5jIBRsKA1SyPrrY_W1D87U2MRWrZh26JbGgkuSS5wSgo652VBWaGIOxRRvcpwqbAkixNVlsTRZ7kx1-ucOXrtbqx_1P_wG43nOj</recordid><startdate>20220808</startdate><enddate>20220808</enddate><creator>Gnanavel, S.</creator><creator>Mani, Vinodhini</creator><creator>Sreekrishna, M.</creator><creator>Amshavalli, R. S.</creator><creator>Reta Gashu, Yomiyu</creator><creator>Duraimurugan, N.</creator><creator>Srinivasa Rao, Namburi</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0701-503X</orcidid><orcidid>https://orcid.org/0000-0002-2970-2802</orcidid><orcidid>https://orcid.org/0000-0003-1246-8762</orcidid><orcidid>https://orcid.org/0000-0003-2344-0482</orcidid><orcidid>https://orcid.org/0000-0002-9480-9868</orcidid><orcidid>https://orcid.org/0000-0002-9525-9853</orcidid><orcidid>https://orcid.org/0000-0001-8423-4768</orcidid></search><sort><creationdate>20220808</creationdate><title>Rapid Text Retrieval and Analysis Supporting Latent Dirichlet Allocation Based on Probabilistic Models</title><author>Gnanavel, S. ; Mani, Vinodhini ; Sreekrishna, M. ; Amshavalli, R. S. ; Reta Gashu, Yomiyu ; Duraimurugan, N. ; Srinivasa Rao, Namburi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-db143ea2f13f12dbf226db7ffd616fc3435df7a6311c18db8dbe63646386e1273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Blockchain</topic><topic>Clustering</topic><topic>Communication</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Data models</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Dirichlet problem</topic><topic>E-books</topic><topic>Libraries</topic><topic>Machine learning</topic><topic>Medical research</topic><topic>Natural language processing</topic><topic>Optimization techniques</topic><topic>Probabilistic models</topic><topic>Search engines</topic><topic>Semantics</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Social research</topic><topic>Structured data</topic><topic>Text analysis</topic><topic>Unstructured data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gnanavel, S.</creatorcontrib><creatorcontrib>Mani, Vinodhini</creatorcontrib><creatorcontrib>Sreekrishna, M.</creatorcontrib><creatorcontrib>Amshavalli, R. S.</creatorcontrib><creatorcontrib>Reta Gashu, Yomiyu</creatorcontrib><creatorcontrib>Duraimurugan, N.</creatorcontrib><creatorcontrib>Srinivasa Rao, Namburi</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mobile information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gnanavel, S.</au><au>Mani, Vinodhini</au><au>Sreekrishna, M.</au><au>Amshavalli, R. S.</au><au>Reta Gashu, Yomiyu</au><au>Duraimurugan, N.</au><au>Srinivasa Rao, Namburi</au><au>Kumar Reddy, M. Praveen</au><au>M Praveen Kumar Reddy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid Text Retrieval and Analysis Supporting Latent Dirichlet Allocation Based on Probabilistic Models</atitle><jtitle>Mobile information systems</jtitle><date>2022-08-08</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1574-017X</issn><eissn>1875-905X</eissn><abstract>Text mining, also known as text analysis, is the process of converting unstructured text data into meaningful and functional information. Text mining uses different AI technologies to automate data and generate valuable insights, allowing enterprises to make data-based decisions. Text mining enables the user to extract important content from text data sets. Text analysis encourages machine learning ability for research areas such as medical and pharmaceutical innovation fields. Apart from this, text analysis converts inaccessible data into a structured format, which can be used for further analysis. Text analysis emphasizes facts and relationships from large data sets. This information is extracted and converted into structured data for visualization, analysis, and integration as structured data and refines the information using machine-learning methods. Like most things related to Natural Language Processing, text mining can seem like a difficult concept to understand. But the fact is, it does not have to be. This research article will go through the basics of text mining, clarify its different methods and techniques, and make it easier to understand how it works. We implemented Latent Dirichlet Allocation techniques for mining the data from the data set; it works properly and will be in future development data mining techniques.</abstract><cop>Amsterdam</cop><pub>Hindawi</pub><doi>10.1155/2022/6028739</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0701-503X</orcidid><orcidid>https://orcid.org/0000-0002-2970-2802</orcidid><orcidid>https://orcid.org/0000-0003-1246-8762</orcidid><orcidid>https://orcid.org/0000-0003-2344-0482</orcidid><orcidid>https://orcid.org/0000-0002-9480-9868</orcidid><orcidid>https://orcid.org/0000-0002-9525-9853</orcidid><orcidid>https://orcid.org/0000-0001-8423-4768</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1574-017X
ispartof Mobile information systems, 2022-08, Vol.2022, p.1-12
issn 1574-017X
1875-905X
language eng
recordid cdi_proquest_journals_2704754011
source Wiley-Blackwell Open Access Titles(OpenAccess)
subjects Algorithms
Big Data
Blockchain
Clustering
Communication
Data analysis
Data mining
Data models
Data processing
Datasets
Dirichlet problem
E-books
Libraries
Machine learning
Medical research
Natural language processing
Optimization techniques
Probabilistic models
Search engines
Semantics
Sentiment analysis
Social networks
Social research
Structured data
Text analysis
Unstructured data
title Rapid Text Retrieval and Analysis Supporting Latent Dirichlet Allocation Based on Probabilistic Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20Text%20Retrieval%20and%20Analysis%20Supporting%20Latent%20Dirichlet%20Allocation%20Based%20on%20Probabilistic%20Models&rft.jtitle=Mobile%20information%20systems&rft.au=Gnanavel,%20S.&rft.date=2022-08-08&rft.volume=2022&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1574-017X&rft.eissn=1875-905X&rft_id=info:doi/10.1155/2022/6028739&rft_dat=%3Cproquest_cross%3E2704754011%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-db143ea2f13f12dbf226db7ffd616fc3435df7a6311c18db8dbe63646386e1273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2704754011&rft_id=info:pmid/&rfr_iscdi=true