Loading…
Rapid Text Retrieval and Analysis Supporting Latent Dirichlet Allocation Based on Probabilistic Models
Text mining, also known as text analysis, is the process of converting unstructured text data into meaningful and functional information. Text mining uses different AI technologies to automate data and generate valuable insights, allowing enterprises to make data-based decisions. Text mining enables...
Saved in:
Published in: | Mobile information systems 2022-08, Vol.2022, p.1-12 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c267t-db143ea2f13f12dbf226db7ffd616fc3435df7a6311c18db8dbe63646386e1273 |
---|---|
cites | cdi_FETCH-LOGICAL-c267t-db143ea2f13f12dbf226db7ffd616fc3435df7a6311c18db8dbe63646386e1273 |
container_end_page | 12 |
container_issue | |
container_start_page | 1 |
container_title | Mobile information systems |
container_volume | 2022 |
creator | Gnanavel, S. Mani, Vinodhini Sreekrishna, M. Amshavalli, R. S. Reta Gashu, Yomiyu Duraimurugan, N. Srinivasa Rao, Namburi |
description | Text mining, also known as text analysis, is the process of converting unstructured text data into meaningful and functional information. Text mining uses different AI technologies to automate data and generate valuable insights, allowing enterprises to make data-based decisions. Text mining enables the user to extract important content from text data sets. Text analysis encourages machine learning ability for research areas such as medical and pharmaceutical innovation fields. Apart from this, text analysis converts inaccessible data into a structured format, which can be used for further analysis. Text analysis emphasizes facts and relationships from large data sets. This information is extracted and converted into structured data for visualization, analysis, and integration as structured data and refines the information using machine-learning methods. Like most things related to Natural Language Processing, text mining can seem like a difficult concept to understand. But the fact is, it does not have to be. This research article will go through the basics of text mining, clarify its different methods and techniques, and make it easier to understand how it works. We implemented Latent Dirichlet Allocation techniques for mining the data from the data set; it works properly and will be in future development data mining techniques. |
doi_str_mv | 10.1155/2022/6028739 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2704754011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704754011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-db143ea2f13f12dbf226db7ffd616fc3435df7a6311c18db8dbe63646386e1273</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKs7f0DApY7NSyZJu6z1EypKrdDdkJkkNiXOjEmq9t87pV0LF95dHB7cg9A5kGsAzgeUUDoQhA4lGx2gHgwlz0aELw67zmWeEZCLY3QS44oQQRiXPWRnqnUaz81vwjOTgjPfymNVazyuld9EF_Hbum2bkFz9gacqmTrhWxdctfQm4bH3TaWSa2p8o6LRuCuvoSlV6byLyVX4udHGx1N0ZJWP5mx_--j9_m4-ecymLw9Pk_E0q6iQKdMl5MwoaoFZoLq0lApdSmu1AGErljOurVSCAVQw1GUXI5jIBRsKA1SyPrrY_W1D87U2MRWrZh26JbGgkuSS5wSgo652VBWaGIOxRRvcpwqbAkixNVlsTRZ7kx1-ucOXrtbqx_1P_wG43nOj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704754011</pqid></control><display><type>article</type><title>Rapid Text Retrieval and Analysis Supporting Latent Dirichlet Allocation Based on Probabilistic Models</title><source>Wiley-Blackwell Open Access Titles(OpenAccess)</source><creator>Gnanavel, S. ; Mani, Vinodhini ; Sreekrishna, M. ; Amshavalli, R. S. ; Reta Gashu, Yomiyu ; Duraimurugan, N. ; Srinivasa Rao, Namburi</creator><contributor>Kumar Reddy, M. Praveen ; M Praveen Kumar Reddy</contributor><creatorcontrib>Gnanavel, S. ; Mani, Vinodhini ; Sreekrishna, M. ; Amshavalli, R. S. ; Reta Gashu, Yomiyu ; Duraimurugan, N. ; Srinivasa Rao, Namburi ; Kumar Reddy, M. Praveen ; M Praveen Kumar Reddy</creatorcontrib><description>Text mining, also known as text analysis, is the process of converting unstructured text data into meaningful and functional information. Text mining uses different AI technologies to automate data and generate valuable insights, allowing enterprises to make data-based decisions. Text mining enables the user to extract important content from text data sets. Text analysis encourages machine learning ability for research areas such as medical and pharmaceutical innovation fields. Apart from this, text analysis converts inaccessible data into a structured format, which can be used for further analysis. Text analysis emphasizes facts and relationships from large data sets. This information is extracted and converted into structured data for visualization, analysis, and integration as structured data and refines the information using machine-learning methods. Like most things related to Natural Language Processing, text mining can seem like a difficult concept to understand. But the fact is, it does not have to be. This research article will go through the basics of text mining, clarify its different methods and techniques, and make it easier to understand how it works. We implemented Latent Dirichlet Allocation techniques for mining the data from the data set; it works properly and will be in future development data mining techniques.</description><identifier>ISSN: 1574-017X</identifier><identifier>EISSN: 1875-905X</identifier><identifier>DOI: 10.1155/2022/6028739</identifier><language>eng</language><publisher>Amsterdam: Hindawi</publisher><subject>Algorithms ; Big Data ; Blockchain ; Clustering ; Communication ; Data analysis ; Data mining ; Data models ; Data processing ; Datasets ; Dirichlet problem ; E-books ; Libraries ; Machine learning ; Medical research ; Natural language processing ; Optimization techniques ; Probabilistic models ; Search engines ; Semantics ; Sentiment analysis ; Social networks ; Social research ; Structured data ; Text analysis ; Unstructured data</subject><ispartof>Mobile information systems, 2022-08, Vol.2022, p.1-12</ispartof><rights>Copyright © 2022 S. Gnanavel et al.</rights><rights>Copyright © 2022 S. Gnanavel et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-db143ea2f13f12dbf226db7ffd616fc3435df7a6311c18db8dbe63646386e1273</citedby><cites>FETCH-LOGICAL-c267t-db143ea2f13f12dbf226db7ffd616fc3435df7a6311c18db8dbe63646386e1273</cites><orcidid>0000-0003-0701-503X ; 0000-0002-2970-2802 ; 0000-0003-1246-8762 ; 0000-0003-2344-0482 ; 0000-0002-9480-9868 ; 0000-0002-9525-9853 ; 0000-0001-8423-4768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Kumar Reddy, M. Praveen</contributor><contributor>M Praveen Kumar Reddy</contributor><creatorcontrib>Gnanavel, S.</creatorcontrib><creatorcontrib>Mani, Vinodhini</creatorcontrib><creatorcontrib>Sreekrishna, M.</creatorcontrib><creatorcontrib>Amshavalli, R. S.</creatorcontrib><creatorcontrib>Reta Gashu, Yomiyu</creatorcontrib><creatorcontrib>Duraimurugan, N.</creatorcontrib><creatorcontrib>Srinivasa Rao, Namburi</creatorcontrib><title>Rapid Text Retrieval and Analysis Supporting Latent Dirichlet Allocation Based on Probabilistic Models</title><title>Mobile information systems</title><description>Text mining, also known as text analysis, is the process of converting unstructured text data into meaningful and functional information. Text mining uses different AI technologies to automate data and generate valuable insights, allowing enterprises to make data-based decisions. Text mining enables the user to extract important content from text data sets. Text analysis encourages machine learning ability for research areas such as medical and pharmaceutical innovation fields. Apart from this, text analysis converts inaccessible data into a structured format, which can be used for further analysis. Text analysis emphasizes facts and relationships from large data sets. This information is extracted and converted into structured data for visualization, analysis, and integration as structured data and refines the information using machine-learning methods. Like most things related to Natural Language Processing, text mining can seem like a difficult concept to understand. But the fact is, it does not have to be. This research article will go through the basics of text mining, clarify its different methods and techniques, and make it easier to understand how it works. We implemented Latent Dirichlet Allocation techniques for mining the data from the data set; it works properly and will be in future development data mining techniques.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Blockchain</subject><subject>Clustering</subject><subject>Communication</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Data models</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Dirichlet problem</subject><subject>E-books</subject><subject>Libraries</subject><subject>Machine learning</subject><subject>Medical research</subject><subject>Natural language processing</subject><subject>Optimization techniques</subject><subject>Probabilistic models</subject><subject>Search engines</subject><subject>Semantics</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Social research</subject><subject>Structured data</subject><subject>Text analysis</subject><subject>Unstructured data</subject><issn>1574-017X</issn><issn>1875-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKs7f0DApY7NSyZJu6z1EypKrdDdkJkkNiXOjEmq9t87pV0LF95dHB7cg9A5kGsAzgeUUDoQhA4lGx2gHgwlz0aELw67zmWeEZCLY3QS44oQQRiXPWRnqnUaz81vwjOTgjPfymNVazyuld9EF_Hbum2bkFz9gacqmTrhWxdctfQm4bH3TaWSa2p8o6LRuCuvoSlV6byLyVX4udHGx1N0ZJWP5mx_--j9_m4-ecymLw9Pk_E0q6iQKdMl5MwoaoFZoLq0lApdSmu1AGErljOurVSCAVQw1GUXI5jIBRsKA1SyPrrY_W1D87U2MRWrZh26JbGgkuSS5wSgo652VBWaGIOxRRvcpwqbAkixNVlsTRZ7kx1-ucOXrtbqx_1P_wG43nOj</recordid><startdate>20220808</startdate><enddate>20220808</enddate><creator>Gnanavel, S.</creator><creator>Mani, Vinodhini</creator><creator>Sreekrishna, M.</creator><creator>Amshavalli, R. S.</creator><creator>Reta Gashu, Yomiyu</creator><creator>Duraimurugan, N.</creator><creator>Srinivasa Rao, Namburi</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0701-503X</orcidid><orcidid>https://orcid.org/0000-0002-2970-2802</orcidid><orcidid>https://orcid.org/0000-0003-1246-8762</orcidid><orcidid>https://orcid.org/0000-0003-2344-0482</orcidid><orcidid>https://orcid.org/0000-0002-9480-9868</orcidid><orcidid>https://orcid.org/0000-0002-9525-9853</orcidid><orcidid>https://orcid.org/0000-0001-8423-4768</orcidid></search><sort><creationdate>20220808</creationdate><title>Rapid Text Retrieval and Analysis Supporting Latent Dirichlet Allocation Based on Probabilistic Models</title><author>Gnanavel, S. ; Mani, Vinodhini ; Sreekrishna, M. ; Amshavalli, R. S. ; Reta Gashu, Yomiyu ; Duraimurugan, N. ; Srinivasa Rao, Namburi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-db143ea2f13f12dbf226db7ffd616fc3435df7a6311c18db8dbe63646386e1273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Blockchain</topic><topic>Clustering</topic><topic>Communication</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Data models</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Dirichlet problem</topic><topic>E-books</topic><topic>Libraries</topic><topic>Machine learning</topic><topic>Medical research</topic><topic>Natural language processing</topic><topic>Optimization techniques</topic><topic>Probabilistic models</topic><topic>Search engines</topic><topic>Semantics</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Social research</topic><topic>Structured data</topic><topic>Text analysis</topic><topic>Unstructured data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gnanavel, S.</creatorcontrib><creatorcontrib>Mani, Vinodhini</creatorcontrib><creatorcontrib>Sreekrishna, M.</creatorcontrib><creatorcontrib>Amshavalli, R. S.</creatorcontrib><creatorcontrib>Reta Gashu, Yomiyu</creatorcontrib><creatorcontrib>Duraimurugan, N.</creatorcontrib><creatorcontrib>Srinivasa Rao, Namburi</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mobile information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gnanavel, S.</au><au>Mani, Vinodhini</au><au>Sreekrishna, M.</au><au>Amshavalli, R. S.</au><au>Reta Gashu, Yomiyu</au><au>Duraimurugan, N.</au><au>Srinivasa Rao, Namburi</au><au>Kumar Reddy, M. Praveen</au><au>M Praveen Kumar Reddy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid Text Retrieval and Analysis Supporting Latent Dirichlet Allocation Based on Probabilistic Models</atitle><jtitle>Mobile information systems</jtitle><date>2022-08-08</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1574-017X</issn><eissn>1875-905X</eissn><abstract>Text mining, also known as text analysis, is the process of converting unstructured text data into meaningful and functional information. Text mining uses different AI technologies to automate data and generate valuable insights, allowing enterprises to make data-based decisions. Text mining enables the user to extract important content from text data sets. Text analysis encourages machine learning ability for research areas such as medical and pharmaceutical innovation fields. Apart from this, text analysis converts inaccessible data into a structured format, which can be used for further analysis. Text analysis emphasizes facts and relationships from large data sets. This information is extracted and converted into structured data for visualization, analysis, and integration as structured data and refines the information using machine-learning methods. Like most things related to Natural Language Processing, text mining can seem like a difficult concept to understand. But the fact is, it does not have to be. This research article will go through the basics of text mining, clarify its different methods and techniques, and make it easier to understand how it works. We implemented Latent Dirichlet Allocation techniques for mining the data from the data set; it works properly and will be in future development data mining techniques.</abstract><cop>Amsterdam</cop><pub>Hindawi</pub><doi>10.1155/2022/6028739</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0701-503X</orcidid><orcidid>https://orcid.org/0000-0002-2970-2802</orcidid><orcidid>https://orcid.org/0000-0003-1246-8762</orcidid><orcidid>https://orcid.org/0000-0003-2344-0482</orcidid><orcidid>https://orcid.org/0000-0002-9480-9868</orcidid><orcidid>https://orcid.org/0000-0002-9525-9853</orcidid><orcidid>https://orcid.org/0000-0001-8423-4768</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-017X |
ispartof | Mobile information systems, 2022-08, Vol.2022, p.1-12 |
issn | 1574-017X 1875-905X |
language | eng |
recordid | cdi_proquest_journals_2704754011 |
source | Wiley-Blackwell Open Access Titles(OpenAccess) |
subjects | Algorithms Big Data Blockchain Clustering Communication Data analysis Data mining Data models Data processing Datasets Dirichlet problem E-books Libraries Machine learning Medical research Natural language processing Optimization techniques Probabilistic models Search engines Semantics Sentiment analysis Social networks Social research Structured data Text analysis Unstructured data |
title | Rapid Text Retrieval and Analysis Supporting Latent Dirichlet Allocation Based on Probabilistic Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20Text%20Retrieval%20and%20Analysis%20Supporting%20Latent%20Dirichlet%20Allocation%20Based%20on%20Probabilistic%20Models&rft.jtitle=Mobile%20information%20systems&rft.au=Gnanavel,%20S.&rft.date=2022-08-08&rft.volume=2022&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1574-017X&rft.eissn=1875-905X&rft_id=info:doi/10.1155/2022/6028739&rft_dat=%3Cproquest_cross%3E2704754011%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-db143ea2f13f12dbf226db7ffd616fc3435df7a6311c18db8dbe63646386e1273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2704754011&rft_id=info:pmid/&rfr_iscdi=true |