Loading…

Existence of Solutions of Boundary Value Problem for Nonlinear One-Dimensional Wave Equations by Fixed Point Method

In this article, we investigate the solutions for a class of initial boundary value problems for nonlinear one-dimensional wave equations using a fixed point method. The findings consider initial and boundary data which lead to determining the nature of classes of the nonlinear one-dimensional wave...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2022-08, Vol.2022, p.1-12
Main Authors: Gusu, Daba Meshesha, Danu, Megersa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-35b3753dfff55b63539274b940b970c06cc1d2c23284fbb1853037ddac32be93
cites cdi_FETCH-LOGICAL-c337t-35b3753dfff55b63539274b940b970c06cc1d2c23284fbb1853037ddac32be93
container_end_page 12
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2022
creator Gusu, Daba Meshesha
Danu, Megersa
description In this article, we investigate the solutions for a class of initial boundary value problems for nonlinear one-dimensional wave equations using a fixed point method. The findings consider initial and boundary data which lead to determining the nature of classes of the nonlinear one-dimensional wave equation. The obtained results indicate the availability of nonnegative solutions which are proved using the method of the fixed point. A new fixed point approach is effective and used as a definitive modeling method to prove the existence of nonnegative solutions for a class of initial boundary value problems based on recent theoretical arguments. The results in this study are considered with examples.
doi_str_mv 10.1155/2022/5099060
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2704754659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704754659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-35b3753dfff55b63539274b940b970c06cc1d2c23284fbb1853037ddac32be93</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujiYje_AFNPOpKP7Zb9qgIaoJCIlFvm7bbhpKlhXZX4d-7Gzh7mpnkmTczDwDXGN1jzNiAIEIGDOU5ytAJ6GGW0YThlJ-2PSJpggn9PgcXMa4QIpjhYQ_E8c7GWjuloTfww1dNbb2L3fDoG1eKsIefomo0nAcvK72Gxgf47l1lnRYBzpxOnuxau9iuiQp-iR8Nx9tGHGLkHk7sTpdw7q2r4Zuul768BGdGVFFfHWsfLCbjxeglmc6eX0cP00RRyuuEMkk5o6UxhjGZUUZzwlOZp0jmHCmUKYVLogglw9RIiYeMIsrLUihKpM5pH9wcYjfBbxsd62Llm9AeGQvCUcpZmrGOujtQKvgYgzbFJth1-3aBUdFZLTqrxdFqi98e8KVt5fza_-k_DzJ24Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704754659</pqid></control><display><type>article</type><title>Existence of Solutions of Boundary Value Problem for Nonlinear One-Dimensional Wave Equations by Fixed Point Method</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Gusu, Daba Meshesha ; Danu, Megersa</creator><contributor>Yusuf, Abdullahi ; Abdullahi Yusuf</contributor><creatorcontrib>Gusu, Daba Meshesha ; Danu, Megersa ; Yusuf, Abdullahi ; Abdullahi Yusuf</creatorcontrib><description>In this article, we investigate the solutions for a class of initial boundary value problems for nonlinear one-dimensional wave equations using a fixed point method. The findings consider initial and boundary data which lead to determining the nature of classes of the nonlinear one-dimensional wave equation. The obtained results indicate the availability of nonnegative solutions which are proved using the method of the fixed point. A new fixed point approach is effective and used as a definitive modeling method to prove the existence of nonnegative solutions for a class of initial boundary value problems based on recent theoretical arguments. The results in this study are considered with examples.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/5099060</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Applied mathematics ; Boundary conditions ; Boundary value problems ; Fluid mechanics ; Mathematical problems ; Partial differential equations ; Wave equations</subject><ispartof>Mathematical problems in engineering, 2022-08, Vol.2022, p.1-12</ispartof><rights>Copyright © 2022 Daba Meshesha Gusu and Megersa Danu.</rights><rights>Copyright © 2022 Daba Meshesha Gusu and Megersa Danu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-35b3753dfff55b63539274b940b970c06cc1d2c23284fbb1853037ddac32be93</citedby><cites>FETCH-LOGICAL-c337t-35b3753dfff55b63539274b940b970c06cc1d2c23284fbb1853037ddac32be93</cites><orcidid>0000-0002-5373-6463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2704754659/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2704754659?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><contributor>Yusuf, Abdullahi</contributor><contributor>Abdullahi Yusuf</contributor><creatorcontrib>Gusu, Daba Meshesha</creatorcontrib><creatorcontrib>Danu, Megersa</creatorcontrib><title>Existence of Solutions of Boundary Value Problem for Nonlinear One-Dimensional Wave Equations by Fixed Point Method</title><title>Mathematical problems in engineering</title><description>In this article, we investigate the solutions for a class of initial boundary value problems for nonlinear one-dimensional wave equations using a fixed point method. The findings consider initial and boundary data which lead to determining the nature of classes of the nonlinear one-dimensional wave equation. The obtained results indicate the availability of nonnegative solutions which are proved using the method of the fixed point. A new fixed point approach is effective and used as a definitive modeling method to prove the existence of nonnegative solutions for a class of initial boundary value problems based on recent theoretical arguments. The results in this study are considered with examples.</description><subject>Applied mathematics</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Fluid mechanics</subject><subject>Mathematical problems</subject><subject>Partial differential equations</subject><subject>Wave equations</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kE1PAjEQhhujiYje_AFNPOpKP7Zb9qgIaoJCIlFvm7bbhpKlhXZX4d-7Gzh7mpnkmTczDwDXGN1jzNiAIEIGDOU5ytAJ6GGW0YThlJ-2PSJpggn9PgcXMa4QIpjhYQ_E8c7GWjuloTfww1dNbb2L3fDoG1eKsIefomo0nAcvK72Gxgf47l1lnRYBzpxOnuxau9iuiQp-iR8Nx9tGHGLkHk7sTpdw7q2r4Zuul768BGdGVFFfHWsfLCbjxeglmc6eX0cP00RRyuuEMkk5o6UxhjGZUUZzwlOZp0jmHCmUKYVLogglw9RIiYeMIsrLUihKpM5pH9wcYjfBbxsd62Llm9AeGQvCUcpZmrGOujtQKvgYgzbFJth1-3aBUdFZLTqrxdFqi98e8KVt5fza_-k_DzJ24Q</recordid><startdate>20220808</startdate><enddate>20220808</enddate><creator>Gusu, Daba Meshesha</creator><creator>Danu, Megersa</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-5373-6463</orcidid></search><sort><creationdate>20220808</creationdate><title>Existence of Solutions of Boundary Value Problem for Nonlinear One-Dimensional Wave Equations by Fixed Point Method</title><author>Gusu, Daba Meshesha ; Danu, Megersa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-35b3753dfff55b63539274b940b970c06cc1d2c23284fbb1853037ddac32be93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied mathematics</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Fluid mechanics</topic><topic>Mathematical problems</topic><topic>Partial differential equations</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gusu, Daba Meshesha</creatorcontrib><creatorcontrib>Danu, Megersa</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gusu, Daba Meshesha</au><au>Danu, Megersa</au><au>Yusuf, Abdullahi</au><au>Abdullahi Yusuf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of Solutions of Boundary Value Problem for Nonlinear One-Dimensional Wave Equations by Fixed Point Method</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022-08-08</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>In this article, we investigate the solutions for a class of initial boundary value problems for nonlinear one-dimensional wave equations using a fixed point method. The findings consider initial and boundary data which lead to determining the nature of classes of the nonlinear one-dimensional wave equation. The obtained results indicate the availability of nonnegative solutions which are proved using the method of the fixed point. A new fixed point approach is effective and used as a definitive modeling method to prove the existence of nonnegative solutions for a class of initial boundary value problems based on recent theoretical arguments. The results in this study are considered with examples.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/5099060</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5373-6463</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2022-08, Vol.2022, p.1-12
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2704754659
source Wiley-Blackwell Open Access Collection; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Applied mathematics
Boundary conditions
Boundary value problems
Fluid mechanics
Mathematical problems
Partial differential equations
Wave equations
title Existence of Solutions of Boundary Value Problem for Nonlinear One-Dimensional Wave Equations by Fixed Point Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A12%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20Solutions%20of%20Boundary%20Value%20Problem%20for%20Nonlinear%20One-Dimensional%20Wave%20Equations%20by%20Fixed%20Point%20Method&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Gusu,%20Daba%20Meshesha&rft.date=2022-08-08&rft.volume=2022&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/5099060&rft_dat=%3Cproquest_cross%3E2704754659%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-35b3753dfff55b63539274b940b970c06cc1d2c23284fbb1853037ddac32be93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2704754659&rft_id=info:pmid/&rfr_iscdi=true