Loading…
Existence of Solutions of Boundary Value Problem for Nonlinear One-Dimensional Wave Equations by Fixed Point Method
In this article, we investigate the solutions for a class of initial boundary value problems for nonlinear one-dimensional wave equations using a fixed point method. The findings consider initial and boundary data which lead to determining the nature of classes of the nonlinear one-dimensional wave...
Saved in:
Published in: | Mathematical problems in engineering 2022-08, Vol.2022, p.1-12 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-35b3753dfff55b63539274b940b970c06cc1d2c23284fbb1853037ddac32be93 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-35b3753dfff55b63539274b940b970c06cc1d2c23284fbb1853037ddac32be93 |
container_end_page | 12 |
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2022 |
creator | Gusu, Daba Meshesha Danu, Megersa |
description | In this article, we investigate the solutions for a class of initial boundary value problems for nonlinear one-dimensional wave equations using a fixed point method. The findings consider initial and boundary data which lead to determining the nature of classes of the nonlinear one-dimensional wave equation. The obtained results indicate the availability of nonnegative solutions which are proved using the method of the fixed point. A new fixed point approach is effective and used as a definitive modeling method to prove the existence of nonnegative solutions for a class of initial boundary value problems based on recent theoretical arguments. The results in this study are considered with examples. |
doi_str_mv | 10.1155/2022/5099060 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2704754659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704754659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-35b3753dfff55b63539274b940b970c06cc1d2c23284fbb1853037ddac32be93</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujiYje_AFNPOpKP7Zb9qgIaoJCIlFvm7bbhpKlhXZX4d-7Gzh7mpnkmTczDwDXGN1jzNiAIEIGDOU5ytAJ6GGW0YThlJ-2PSJpggn9PgcXMa4QIpjhYQ_E8c7GWjuloTfww1dNbb2L3fDoG1eKsIefomo0nAcvK72Gxgf47l1lnRYBzpxOnuxau9iuiQp-iR8Nx9tGHGLkHk7sTpdw7q2r4Zuul768BGdGVFFfHWsfLCbjxeglmc6eX0cP00RRyuuEMkk5o6UxhjGZUUZzwlOZp0jmHCmUKYVLogglw9RIiYeMIsrLUihKpM5pH9wcYjfBbxsd62Llm9AeGQvCUcpZmrGOujtQKvgYgzbFJth1-3aBUdFZLTqrxdFqi98e8KVt5fza_-k_DzJ24Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704754659</pqid></control><display><type>article</type><title>Existence of Solutions of Boundary Value Problem for Nonlinear One-Dimensional Wave Equations by Fixed Point Method</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Gusu, Daba Meshesha ; Danu, Megersa</creator><contributor>Yusuf, Abdullahi ; Abdullahi Yusuf</contributor><creatorcontrib>Gusu, Daba Meshesha ; Danu, Megersa ; Yusuf, Abdullahi ; Abdullahi Yusuf</creatorcontrib><description>In this article, we investigate the solutions for a class of initial boundary value problems for nonlinear one-dimensional wave equations using a fixed point method. The findings consider initial and boundary data which lead to determining the nature of classes of the nonlinear one-dimensional wave equation. The obtained results indicate the availability of nonnegative solutions which are proved using the method of the fixed point. A new fixed point approach is effective and used as a definitive modeling method to prove the existence of nonnegative solutions for a class of initial boundary value problems based on recent theoretical arguments. The results in this study are considered with examples.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/5099060</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Applied mathematics ; Boundary conditions ; Boundary value problems ; Fluid mechanics ; Mathematical problems ; Partial differential equations ; Wave equations</subject><ispartof>Mathematical problems in engineering, 2022-08, Vol.2022, p.1-12</ispartof><rights>Copyright © 2022 Daba Meshesha Gusu and Megersa Danu.</rights><rights>Copyright © 2022 Daba Meshesha Gusu and Megersa Danu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-35b3753dfff55b63539274b940b970c06cc1d2c23284fbb1853037ddac32be93</citedby><cites>FETCH-LOGICAL-c337t-35b3753dfff55b63539274b940b970c06cc1d2c23284fbb1853037ddac32be93</cites><orcidid>0000-0002-5373-6463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2704754659/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2704754659?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><contributor>Yusuf, Abdullahi</contributor><contributor>Abdullahi Yusuf</contributor><creatorcontrib>Gusu, Daba Meshesha</creatorcontrib><creatorcontrib>Danu, Megersa</creatorcontrib><title>Existence of Solutions of Boundary Value Problem for Nonlinear One-Dimensional Wave Equations by Fixed Point Method</title><title>Mathematical problems in engineering</title><description>In this article, we investigate the solutions for a class of initial boundary value problems for nonlinear one-dimensional wave equations using a fixed point method. The findings consider initial and boundary data which lead to determining the nature of classes of the nonlinear one-dimensional wave equation. The obtained results indicate the availability of nonnegative solutions which are proved using the method of the fixed point. A new fixed point approach is effective and used as a definitive modeling method to prove the existence of nonnegative solutions for a class of initial boundary value problems based on recent theoretical arguments. The results in this study are considered with examples.</description><subject>Applied mathematics</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Fluid mechanics</subject><subject>Mathematical problems</subject><subject>Partial differential equations</subject><subject>Wave equations</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kE1PAjEQhhujiYje_AFNPOpKP7Zb9qgIaoJCIlFvm7bbhpKlhXZX4d-7Gzh7mpnkmTczDwDXGN1jzNiAIEIGDOU5ytAJ6GGW0YThlJ-2PSJpggn9PgcXMa4QIpjhYQ_E8c7GWjuloTfww1dNbb2L3fDoG1eKsIefomo0nAcvK72Gxgf47l1lnRYBzpxOnuxau9iuiQp-iR8Nx9tGHGLkHk7sTpdw7q2r4Zuul768BGdGVFFfHWsfLCbjxeglmc6eX0cP00RRyuuEMkk5o6UxhjGZUUZzwlOZp0jmHCmUKYVLogglw9RIiYeMIsrLUihKpM5pH9wcYjfBbxsd62Llm9AeGQvCUcpZmrGOujtQKvgYgzbFJth1-3aBUdFZLTqrxdFqi98e8KVt5fza_-k_DzJ24Q</recordid><startdate>20220808</startdate><enddate>20220808</enddate><creator>Gusu, Daba Meshesha</creator><creator>Danu, Megersa</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-5373-6463</orcidid></search><sort><creationdate>20220808</creationdate><title>Existence of Solutions of Boundary Value Problem for Nonlinear One-Dimensional Wave Equations by Fixed Point Method</title><author>Gusu, Daba Meshesha ; Danu, Megersa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-35b3753dfff55b63539274b940b970c06cc1d2c23284fbb1853037ddac32be93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied mathematics</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Fluid mechanics</topic><topic>Mathematical problems</topic><topic>Partial differential equations</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gusu, Daba Meshesha</creatorcontrib><creatorcontrib>Danu, Megersa</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gusu, Daba Meshesha</au><au>Danu, Megersa</au><au>Yusuf, Abdullahi</au><au>Abdullahi Yusuf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of Solutions of Boundary Value Problem for Nonlinear One-Dimensional Wave Equations by Fixed Point Method</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022-08-08</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>In this article, we investigate the solutions for a class of initial boundary value problems for nonlinear one-dimensional wave equations using a fixed point method. The findings consider initial and boundary data which lead to determining the nature of classes of the nonlinear one-dimensional wave equation. The obtained results indicate the availability of nonnegative solutions which are proved using the method of the fixed point. A new fixed point approach is effective and used as a definitive modeling method to prove the existence of nonnegative solutions for a class of initial boundary value problems based on recent theoretical arguments. The results in this study are considered with examples.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/5099060</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5373-6463</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2022-08, Vol.2022, p.1-12 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2704754659 |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Applied mathematics Boundary conditions Boundary value problems Fluid mechanics Mathematical problems Partial differential equations Wave equations |
title | Existence of Solutions of Boundary Value Problem for Nonlinear One-Dimensional Wave Equations by Fixed Point Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A12%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20Solutions%20of%20Boundary%20Value%20Problem%20for%20Nonlinear%20One-Dimensional%20Wave%20Equations%20by%20Fixed%20Point%20Method&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Gusu,%20Daba%20Meshesha&rft.date=2022-08-08&rft.volume=2022&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/5099060&rft_dat=%3Cproquest_cross%3E2704754659%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-35b3753dfff55b63539274b940b970c06cc1d2c23284fbb1853037ddac32be93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2704754659&rft_id=info:pmid/&rfr_iscdi=true |