Loading…
Trajectory tracking for quadrotors: An optimization‐based planning followed by controlling approach
We present an optimization‐based reference trajectory tracking method for quadrotor robots for slow‐speed maneuvers. The proposed method uses planning followed by the controlling paradigm. The basic concept of the proposed method is an analogy with linear quadratic Gaussian in which nonlinear model...
Saved in:
Published in: | Journal of field robotics 2022-10, Vol.39 (7), p.1003-1013 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3324-84ee74478eb79606afad6e3b06be7dee1a65e92705573443fd45c718ec17a5743 |
---|---|
cites | cdi_FETCH-LOGICAL-c3324-84ee74478eb79606afad6e3b06be7dee1a65e92705573443fd45c718ec17a5743 |
container_end_page | 1013 |
container_issue | 7 |
container_start_page | 1003 |
container_title | Journal of field robotics |
container_volume | 39 |
creator | Kulathunga, Geesara Devitt, Dmitry Klimchik, Alexandr |
description | We present an optimization‐based reference trajectory tracking method for quadrotor robots for slow‐speed maneuvers. The proposed method uses planning followed by the controlling paradigm. The basic concept of the proposed method is an analogy with linear quadratic Gaussian in which nonlinear model predictive control (NMPC) is employed for predicting optimal control policy in each iteration. Multiple‐shooting is suggested over direct‐collocation for imposing constraints when modeling the NMPC. Incremental Euclidean distance transformation map is constructed for obtaining the closest free distances relative to the predicted trajectory; these distances are considered obstacle constraints. The reference trajectory is generated ensuring dynamic feasibility. The objective is to minimize the error between the quadrotor's current pose and the desired reference trajectory pose in each iteration. Finally, we compared the proposed method with two other approaches and showed that the proposed method outperforms the said approaches in terms of reaching the goal without any collision. Additionally, we published a new data set that can be used for evaluating the performance of trajectory tracking algorithms. |
doi_str_mv | 10.1002/rob.22084 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2704845118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704845118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3324-84ee74478eb79606afad6e3b06be7dee1a65e92705573443fd45c718ec17a5743</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIayd27LAriD-pUiVU1pbjTCAljVM7VRVWHIEzchJcgtixmpmn782THkLnlEwoIfHU2XwSx0SyAzSinKcRy1Jx-Lfz7BideL8ihCUy4yMES6dXYDrretw5bd6q5gWX1uHNVhfOBt1f4VmDbdtV6-pdd5Vtvj4-c-2hwG2tm2Yw1LXdBSXvsbFN58K913XbOqvN6yk6KnXt4ex3jtHz3e3y5iGaL-4fb2bzyCRJzCLJAARjQkIuspSkutRFCklO0hxEAUB1yiGLBeFcJIwlZcG4EVSCoUJzwZIxuhj-htjNFnynVnbrmhCpgotJximVgbocKOOs9w5K1bpqrV2vKFH7FlVoUf20GNjpwO6qGvr_QfW0uB4c37UCdk0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704845118</pqid></control><display><type>article</type><title>Trajectory tracking for quadrotors: An optimization‐based planning followed by controlling approach</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Kulathunga, Geesara ; Devitt, Dmitry ; Klimchik, Alexandr</creator><creatorcontrib>Kulathunga, Geesara ; Devitt, Dmitry ; Klimchik, Alexandr</creatorcontrib><description>We present an optimization‐based reference trajectory tracking method for quadrotor robots for slow‐speed maneuvers. The proposed method uses planning followed by the controlling paradigm. The basic concept of the proposed method is an analogy with linear quadratic Gaussian in which nonlinear model predictive control (NMPC) is employed for predicting optimal control policy in each iteration. Multiple‐shooting is suggested over direct‐collocation for imposing constraints when modeling the NMPC. Incremental Euclidean distance transformation map is constructed for obtaining the closest free distances relative to the predicted trajectory; these distances are considered obstacle constraints. The reference trajectory is generated ensuring dynamic feasibility. The objective is to minimize the error between the quadrotor's current pose and the desired reference trajectory pose in each iteration. Finally, we compared the proposed method with two other approaches and showed that the proposed method outperforms the said approaches in terms of reaching the goal without any collision. Additionally, we published a new data set that can be used for evaluating the performance of trajectory tracking algorithms.</description><identifier>ISSN: 1556-4959</identifier><identifier>EISSN: 1556-4967</identifier><identifier>DOI: 10.1002/rob.22084</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Constraint modelling ; Euclidean distance transformation map ; Euclidean geometry ; Iterative methods ; linear quadratic Gaussian ; motion planning ; multiple shooting ; Nonlinear control ; nonlinear model predictive control ; obstacle avoidance ; Optimal control ; Optimization ; Predictive control ; Rotary wing aircraft ; Tracking</subject><ispartof>Journal of field robotics, 2022-10, Vol.39 (7), p.1003-1013</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3324-84ee74478eb79606afad6e3b06be7dee1a65e92705573443fd45c718ec17a5743</citedby><cites>FETCH-LOGICAL-c3324-84ee74478eb79606afad6e3b06be7dee1a65e92705573443fd45c718ec17a5743</cites><orcidid>0000-0002-2244-1849 ; 0000-0003-3378-9813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Kulathunga, Geesara</creatorcontrib><creatorcontrib>Devitt, Dmitry</creatorcontrib><creatorcontrib>Klimchik, Alexandr</creatorcontrib><title>Trajectory tracking for quadrotors: An optimization‐based planning followed by controlling approach</title><title>Journal of field robotics</title><description>We present an optimization‐based reference trajectory tracking method for quadrotor robots for slow‐speed maneuvers. The proposed method uses planning followed by the controlling paradigm. The basic concept of the proposed method is an analogy with linear quadratic Gaussian in which nonlinear model predictive control (NMPC) is employed for predicting optimal control policy in each iteration. Multiple‐shooting is suggested over direct‐collocation for imposing constraints when modeling the NMPC. Incremental Euclidean distance transformation map is constructed for obtaining the closest free distances relative to the predicted trajectory; these distances are considered obstacle constraints. The reference trajectory is generated ensuring dynamic feasibility. The objective is to minimize the error between the quadrotor's current pose and the desired reference trajectory pose in each iteration. Finally, we compared the proposed method with two other approaches and showed that the proposed method outperforms the said approaches in terms of reaching the goal without any collision. Additionally, we published a new data set that can be used for evaluating the performance of trajectory tracking algorithms.</description><subject>Algorithms</subject><subject>Constraint modelling</subject><subject>Euclidean distance transformation map</subject><subject>Euclidean geometry</subject><subject>Iterative methods</subject><subject>linear quadratic Gaussian</subject><subject>motion planning</subject><subject>multiple shooting</subject><subject>Nonlinear control</subject><subject>nonlinear model predictive control</subject><subject>obstacle avoidance</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Rotary wing aircraft</subject><subject>Tracking</subject><issn>1556-4959</issn><issn>1556-4967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIayd27LAriD-pUiVU1pbjTCAljVM7VRVWHIEzchJcgtixmpmn782THkLnlEwoIfHU2XwSx0SyAzSinKcRy1Jx-Lfz7BideL8ihCUy4yMES6dXYDrretw5bd6q5gWX1uHNVhfOBt1f4VmDbdtV6-pdd5Vtvj4-c-2hwG2tm2Yw1LXdBSXvsbFN58K913XbOqvN6yk6KnXt4ex3jtHz3e3y5iGaL-4fb2bzyCRJzCLJAARjQkIuspSkutRFCklO0hxEAUB1yiGLBeFcJIwlZcG4EVSCoUJzwZIxuhj-htjNFnynVnbrmhCpgotJximVgbocKOOs9w5K1bpqrV2vKFH7FlVoUf20GNjpwO6qGvr_QfW0uB4c37UCdk0</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Kulathunga, Geesara</creator><creator>Devitt, Dmitry</creator><creator>Klimchik, Alexandr</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2244-1849</orcidid><orcidid>https://orcid.org/0000-0003-3378-9813</orcidid></search><sort><creationdate>202210</creationdate><title>Trajectory tracking for quadrotors: An optimization‐based planning followed by controlling approach</title><author>Kulathunga, Geesara ; Devitt, Dmitry ; Klimchik, Alexandr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3324-84ee74478eb79606afad6e3b06be7dee1a65e92705573443fd45c718ec17a5743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Constraint modelling</topic><topic>Euclidean distance transformation map</topic><topic>Euclidean geometry</topic><topic>Iterative methods</topic><topic>linear quadratic Gaussian</topic><topic>motion planning</topic><topic>multiple shooting</topic><topic>Nonlinear control</topic><topic>nonlinear model predictive control</topic><topic>obstacle avoidance</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Rotary wing aircraft</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulathunga, Geesara</creatorcontrib><creatorcontrib>Devitt, Dmitry</creatorcontrib><creatorcontrib>Klimchik, Alexandr</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of field robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulathunga, Geesara</au><au>Devitt, Dmitry</au><au>Klimchik, Alexandr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectory tracking for quadrotors: An optimization‐based planning followed by controlling approach</atitle><jtitle>Journal of field robotics</jtitle><date>2022-10</date><risdate>2022</risdate><volume>39</volume><issue>7</issue><spage>1003</spage><epage>1013</epage><pages>1003-1013</pages><issn>1556-4959</issn><eissn>1556-4967</eissn><abstract>We present an optimization‐based reference trajectory tracking method for quadrotor robots for slow‐speed maneuvers. The proposed method uses planning followed by the controlling paradigm. The basic concept of the proposed method is an analogy with linear quadratic Gaussian in which nonlinear model predictive control (NMPC) is employed for predicting optimal control policy in each iteration. Multiple‐shooting is suggested over direct‐collocation for imposing constraints when modeling the NMPC. Incremental Euclidean distance transformation map is constructed for obtaining the closest free distances relative to the predicted trajectory; these distances are considered obstacle constraints. The reference trajectory is generated ensuring dynamic feasibility. The objective is to minimize the error between the quadrotor's current pose and the desired reference trajectory pose in each iteration. Finally, we compared the proposed method with two other approaches and showed that the proposed method outperforms the said approaches in terms of reaching the goal without any collision. Additionally, we published a new data set that can be used for evaluating the performance of trajectory tracking algorithms.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rob.22084</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2244-1849</orcidid><orcidid>https://orcid.org/0000-0003-3378-9813</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1556-4959 |
ispartof | Journal of field robotics, 2022-10, Vol.39 (7), p.1003-1013 |
issn | 1556-4959 1556-4967 |
language | eng |
recordid | cdi_proquest_journals_2704845118 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
subjects | Algorithms Constraint modelling Euclidean distance transformation map Euclidean geometry Iterative methods linear quadratic Gaussian motion planning multiple shooting Nonlinear control nonlinear model predictive control obstacle avoidance Optimal control Optimization Predictive control Rotary wing aircraft Tracking |
title | Trajectory tracking for quadrotors: An optimization‐based planning followed by controlling approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectory%20tracking%20for%20quadrotors:%20An%20optimization%E2%80%90based%20planning%20followed%20by%20controlling%20approach&rft.jtitle=Journal%20of%20field%20robotics&rft.au=Kulathunga,%20Geesara&rft.date=2022-10&rft.volume=39&rft.issue=7&rft.spage=1003&rft.epage=1013&rft.pages=1003-1013&rft.issn=1556-4959&rft.eissn=1556-4967&rft_id=info:doi/10.1002/rob.22084&rft_dat=%3Cproquest_cross%3E2704845118%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3324-84ee74478eb79606afad6e3b06be7dee1a65e92705573443fd45c718ec17a5743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2704845118&rft_id=info:pmid/&rfr_iscdi=true |