Loading…

Trajectory tracking for quadrotors: An optimization‐based planning followed by controlling approach

We present an optimization‐based reference trajectory tracking method for quadrotor robots for slow‐speed maneuvers. The proposed method uses planning followed by the controlling paradigm. The basic concept of the proposed method is an analogy with linear quadratic Gaussian in which nonlinear model...

Full description

Saved in:
Bibliographic Details
Published in:Journal of field robotics 2022-10, Vol.39 (7), p.1003-1013
Main Authors: Kulathunga, Geesara, Devitt, Dmitry, Klimchik, Alexandr
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3324-84ee74478eb79606afad6e3b06be7dee1a65e92705573443fd45c718ec17a5743
cites cdi_FETCH-LOGICAL-c3324-84ee74478eb79606afad6e3b06be7dee1a65e92705573443fd45c718ec17a5743
container_end_page 1013
container_issue 7
container_start_page 1003
container_title Journal of field robotics
container_volume 39
creator Kulathunga, Geesara
Devitt, Dmitry
Klimchik, Alexandr
description We present an optimization‐based reference trajectory tracking method for quadrotor robots for slow‐speed maneuvers. The proposed method uses planning followed by the controlling paradigm. The basic concept of the proposed method is an analogy with linear quadratic Gaussian in which nonlinear model predictive control (NMPC) is employed for predicting optimal control policy in each iteration. Multiple‐shooting is suggested over direct‐collocation for imposing constraints when modeling the NMPC. Incremental Euclidean distance transformation map is constructed for obtaining the closest free distances relative to the predicted trajectory; these distances are considered obstacle constraints. The reference trajectory is generated ensuring dynamic feasibility. The objective is to minimize the error between the quadrotor's current pose and the desired reference trajectory pose in each iteration. Finally, we compared the proposed method with two other approaches and showed that the proposed method outperforms the said approaches in terms of reaching the goal without any collision. Additionally, we published a new data set that can be used for evaluating the performance of trajectory tracking algorithms.
doi_str_mv 10.1002/rob.22084
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2704845118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704845118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3324-84ee74478eb79606afad6e3b06be7dee1a65e92705573443fd45c718ec17a5743</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIayd27LAriD-pUiVU1pbjTCAljVM7VRVWHIEzchJcgtixmpmn782THkLnlEwoIfHU2XwSx0SyAzSinKcRy1Jx-Lfz7BideL8ihCUy4yMES6dXYDrretw5bd6q5gWX1uHNVhfOBt1f4VmDbdtV6-pdd5Vtvj4-c-2hwG2tm2Yw1LXdBSXvsbFN58K913XbOqvN6yk6KnXt4ex3jtHz3e3y5iGaL-4fb2bzyCRJzCLJAARjQkIuspSkutRFCklO0hxEAUB1yiGLBeFcJIwlZcG4EVSCoUJzwZIxuhj-htjNFnynVnbrmhCpgotJximVgbocKOOs9w5K1bpqrV2vKFH7FlVoUf20GNjpwO6qGvr_QfW0uB4c37UCdk0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704845118</pqid></control><display><type>article</type><title>Trajectory tracking for quadrotors: An optimization‐based planning followed by controlling approach</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Kulathunga, Geesara ; Devitt, Dmitry ; Klimchik, Alexandr</creator><creatorcontrib>Kulathunga, Geesara ; Devitt, Dmitry ; Klimchik, Alexandr</creatorcontrib><description>We present an optimization‐based reference trajectory tracking method for quadrotor robots for slow‐speed maneuvers. The proposed method uses planning followed by the controlling paradigm. The basic concept of the proposed method is an analogy with linear quadratic Gaussian in which nonlinear model predictive control (NMPC) is employed for predicting optimal control policy in each iteration. Multiple‐shooting is suggested over direct‐collocation for imposing constraints when modeling the NMPC. Incremental Euclidean distance transformation map is constructed for obtaining the closest free distances relative to the predicted trajectory; these distances are considered obstacle constraints. The reference trajectory is generated ensuring dynamic feasibility. The objective is to minimize the error between the quadrotor's current pose and the desired reference trajectory pose in each iteration. Finally, we compared the proposed method with two other approaches and showed that the proposed method outperforms the said approaches in terms of reaching the goal without any collision. Additionally, we published a new data set that can be used for evaluating the performance of trajectory tracking algorithms.</description><identifier>ISSN: 1556-4959</identifier><identifier>EISSN: 1556-4967</identifier><identifier>DOI: 10.1002/rob.22084</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Constraint modelling ; Euclidean distance transformation map ; Euclidean geometry ; Iterative methods ; linear quadratic Gaussian ; motion planning ; multiple shooting ; Nonlinear control ; nonlinear model predictive control ; obstacle avoidance ; Optimal control ; Optimization ; Predictive control ; Rotary wing aircraft ; Tracking</subject><ispartof>Journal of field robotics, 2022-10, Vol.39 (7), p.1003-1013</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3324-84ee74478eb79606afad6e3b06be7dee1a65e92705573443fd45c718ec17a5743</citedby><cites>FETCH-LOGICAL-c3324-84ee74478eb79606afad6e3b06be7dee1a65e92705573443fd45c718ec17a5743</cites><orcidid>0000-0002-2244-1849 ; 0000-0003-3378-9813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Kulathunga, Geesara</creatorcontrib><creatorcontrib>Devitt, Dmitry</creatorcontrib><creatorcontrib>Klimchik, Alexandr</creatorcontrib><title>Trajectory tracking for quadrotors: An optimization‐based planning followed by controlling approach</title><title>Journal of field robotics</title><description>We present an optimization‐based reference trajectory tracking method for quadrotor robots for slow‐speed maneuvers. The proposed method uses planning followed by the controlling paradigm. The basic concept of the proposed method is an analogy with linear quadratic Gaussian in which nonlinear model predictive control (NMPC) is employed for predicting optimal control policy in each iteration. Multiple‐shooting is suggested over direct‐collocation for imposing constraints when modeling the NMPC. Incremental Euclidean distance transformation map is constructed for obtaining the closest free distances relative to the predicted trajectory; these distances are considered obstacle constraints. The reference trajectory is generated ensuring dynamic feasibility. The objective is to minimize the error between the quadrotor's current pose and the desired reference trajectory pose in each iteration. Finally, we compared the proposed method with two other approaches and showed that the proposed method outperforms the said approaches in terms of reaching the goal without any collision. Additionally, we published a new data set that can be used for evaluating the performance of trajectory tracking algorithms.</description><subject>Algorithms</subject><subject>Constraint modelling</subject><subject>Euclidean distance transformation map</subject><subject>Euclidean geometry</subject><subject>Iterative methods</subject><subject>linear quadratic Gaussian</subject><subject>motion planning</subject><subject>multiple shooting</subject><subject>Nonlinear control</subject><subject>nonlinear model predictive control</subject><subject>obstacle avoidance</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Rotary wing aircraft</subject><subject>Tracking</subject><issn>1556-4959</issn><issn>1556-4967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIayd27LAriD-pUiVU1pbjTCAljVM7VRVWHIEzchJcgtixmpmn782THkLnlEwoIfHU2XwSx0SyAzSinKcRy1Jx-Lfz7BideL8ihCUy4yMES6dXYDrretw5bd6q5gWX1uHNVhfOBt1f4VmDbdtV6-pdd5Vtvj4-c-2hwG2tm2Yw1LXdBSXvsbFN58K913XbOqvN6yk6KnXt4ex3jtHz3e3y5iGaL-4fb2bzyCRJzCLJAARjQkIuspSkutRFCklO0hxEAUB1yiGLBeFcJIwlZcG4EVSCoUJzwZIxuhj-htjNFnynVnbrmhCpgotJximVgbocKOOs9w5K1bpqrV2vKFH7FlVoUf20GNjpwO6qGvr_QfW0uB4c37UCdk0</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Kulathunga, Geesara</creator><creator>Devitt, Dmitry</creator><creator>Klimchik, Alexandr</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2244-1849</orcidid><orcidid>https://orcid.org/0000-0003-3378-9813</orcidid></search><sort><creationdate>202210</creationdate><title>Trajectory tracking for quadrotors: An optimization‐based planning followed by controlling approach</title><author>Kulathunga, Geesara ; Devitt, Dmitry ; Klimchik, Alexandr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3324-84ee74478eb79606afad6e3b06be7dee1a65e92705573443fd45c718ec17a5743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Constraint modelling</topic><topic>Euclidean distance transformation map</topic><topic>Euclidean geometry</topic><topic>Iterative methods</topic><topic>linear quadratic Gaussian</topic><topic>motion planning</topic><topic>multiple shooting</topic><topic>Nonlinear control</topic><topic>nonlinear model predictive control</topic><topic>obstacle avoidance</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Rotary wing aircraft</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulathunga, Geesara</creatorcontrib><creatorcontrib>Devitt, Dmitry</creatorcontrib><creatorcontrib>Klimchik, Alexandr</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of field robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulathunga, Geesara</au><au>Devitt, Dmitry</au><au>Klimchik, Alexandr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectory tracking for quadrotors: An optimization‐based planning followed by controlling approach</atitle><jtitle>Journal of field robotics</jtitle><date>2022-10</date><risdate>2022</risdate><volume>39</volume><issue>7</issue><spage>1003</spage><epage>1013</epage><pages>1003-1013</pages><issn>1556-4959</issn><eissn>1556-4967</eissn><abstract>We present an optimization‐based reference trajectory tracking method for quadrotor robots for slow‐speed maneuvers. The proposed method uses planning followed by the controlling paradigm. The basic concept of the proposed method is an analogy with linear quadratic Gaussian in which nonlinear model predictive control (NMPC) is employed for predicting optimal control policy in each iteration. Multiple‐shooting is suggested over direct‐collocation for imposing constraints when modeling the NMPC. Incremental Euclidean distance transformation map is constructed for obtaining the closest free distances relative to the predicted trajectory; these distances are considered obstacle constraints. The reference trajectory is generated ensuring dynamic feasibility. The objective is to minimize the error between the quadrotor's current pose and the desired reference trajectory pose in each iteration. Finally, we compared the proposed method with two other approaches and showed that the proposed method outperforms the said approaches in terms of reaching the goal without any collision. Additionally, we published a new data set that can be used for evaluating the performance of trajectory tracking algorithms.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rob.22084</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2244-1849</orcidid><orcidid>https://orcid.org/0000-0003-3378-9813</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1556-4959
ispartof Journal of field robotics, 2022-10, Vol.39 (7), p.1003-1013
issn 1556-4959
1556-4967
language eng
recordid cdi_proquest_journals_2704845118
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Algorithms
Constraint modelling
Euclidean distance transformation map
Euclidean geometry
Iterative methods
linear quadratic Gaussian
motion planning
multiple shooting
Nonlinear control
nonlinear model predictive control
obstacle avoidance
Optimal control
Optimization
Predictive control
Rotary wing aircraft
Tracking
title Trajectory tracking for quadrotors: An optimization‐based planning followed by controlling approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectory%20tracking%20for%20quadrotors:%20An%20optimization%E2%80%90based%20planning%20followed%20by%20controlling%20approach&rft.jtitle=Journal%20of%20field%20robotics&rft.au=Kulathunga,%20Geesara&rft.date=2022-10&rft.volume=39&rft.issue=7&rft.spage=1003&rft.epage=1013&rft.pages=1003-1013&rft.issn=1556-4959&rft.eissn=1556-4967&rft_id=info:doi/10.1002/rob.22084&rft_dat=%3Cproquest_cross%3E2704845118%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3324-84ee74478eb79606afad6e3b06be7dee1a65e92705573443fd45c718ec17a5743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2704845118&rft_id=info:pmid/&rfr_iscdi=true