Loading…

A method to challenge symmetries in data with self-supervised learning

Symmetries are key properties of physical models and of experimental designs, but any proposed symmetry may or may not be realized in nature. In this paper, we introduce a practical and general method to test such suspected symmetries in data, with minimal external input. Self-supervision, which der...

Full description

Saved in:
Bibliographic Details
Published in:Journal of instrumentation 2022-08, Vol.17 (8), p.P08024
Main Authors: Tombs, Rupert, Lester, Christopher G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-b85e2fd18089f43eb7412b8b9e0a16d930884a446a9a8e313dcd8d99f529cdad3
cites cdi_FETCH-LOGICAL-c409t-b85e2fd18089f43eb7412b8b9e0a16d930884a446a9a8e313dcd8d99f529cdad3
container_end_page
container_issue 8
container_start_page P08024
container_title Journal of instrumentation
container_volume 17
creator Tombs, Rupert
Lester, Christopher G.
description Symmetries are key properties of physical models and of experimental designs, but any proposed symmetry may or may not be realized in nature. In this paper, we introduce a practical and general method to test such suspected symmetries in data, with minimal external input. Self-supervision, which derives learning objectives from data without external labelling, is used to train models to predict 'which is real?' between real data and symmetrically transformed alternatives. If these models make successful predictions in independent tests, then they challenge the targeted symmetries. Crucially, our method handles filtered data, which often arise from inefficiencies or deliberate selections, and which could give the illusion of asymmetry if mistreated. We use examples to demonstrate how the method works and how the models' predictions can be interpreted. Code and data are available at  https://zenodo.org/record/6861702 .
doi_str_mv 10.1088/1748-0221/17/08/P08024
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2705437011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2705437011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-b85e2fd18089f43eb7412b8b9e0a16d930884a446a9a8e313dcd8d99f529cdad3</originalsourceid><addsrcrecordid>eNqFUMFKAzEQDaJgrf6CBLwJayfZbDc5lmJVKOhBzyG7mW1TtrtrslX696asaA-Cp3nMvPdm5hFyzeCOgZQTlguZAOcsognIyQtI4OKEjH4Gp0f4nFyEsAHIVCZgRBYzusV-3Vrat7Rcm7rGZoU07Lex7R0G6hpqTW_op-vXNGBdJWHXof9wAS2t0fjGNatLclaZOuDVdx2Tt8X96_wxWT4_PM1ny6QUoPqkkBnyyjIJUlUixSIXjBeyUAiGTa1K4z_CCDE1ykhMWWpLK61SVcZVaY1Nx-Rm8O18-77D0OtNu_NNXKl5DplIc2AssqYDq_RtCB4r3Xm3NX6vGehDZvoQhz7EEZEGqYfMopAPQtd2v87_im7_EG1cE687JurOVukXriN8Mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705437011</pqid></control><display><type>article</type><title>A method to challenge symmetries in data with self-supervised learning</title><source>Institute of Physics</source><creator>Tombs, Rupert ; Lester, Christopher G.</creator><creatorcontrib>Tombs, Rupert ; Lester, Christopher G.</creatorcontrib><description>Symmetries are key properties of physical models and of experimental designs, but any proposed symmetry may or may not be realized in nature. In this paper, we introduce a practical and general method to test such suspected symmetries in data, with minimal external input. Self-supervision, which derives learning objectives from data without external labelling, is used to train models to predict 'which is real?' between real data and symmetrically transformed alternatives. If these models make successful predictions in independent tests, then they challenge the targeted symmetries. Crucially, our method handles filtered data, which often arise from inefficiencies or deliberate selections, and which could give the illusion of asymmetry if mistreated. We use examples to demonstrate how the method works and how the models' predictions can be interpreted. Code and data are available at  https://zenodo.org/record/6861702 .</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/17/08/P08024</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Analysis and statistical methods ; Data reduction methods ; Pattern recognition, cluster finding, calibration and fitting methods ; Self-supervised learning</subject><ispartof>Journal of instrumentation, 2022-08, Vol.17 (8), p.P08024</ispartof><rights>2022 The Author(s)</rights><rights>2022 The Author(s). This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-b85e2fd18089f43eb7412b8b9e0a16d930884a446a9a8e313dcd8d99f529cdad3</citedby><cites>FETCH-LOGICAL-c409t-b85e2fd18089f43eb7412b8b9e0a16d930884a446a9a8e313dcd8d99f529cdad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tombs, Rupert</creatorcontrib><creatorcontrib>Lester, Christopher G.</creatorcontrib><title>A method to challenge symmetries in data with self-supervised learning</title><title>Journal of instrumentation</title><addtitle>J. Instrum</addtitle><description>Symmetries are key properties of physical models and of experimental designs, but any proposed symmetry may or may not be realized in nature. In this paper, we introduce a practical and general method to test such suspected symmetries in data, with minimal external input. Self-supervision, which derives learning objectives from data without external labelling, is used to train models to predict 'which is real?' between real data and symmetrically transformed alternatives. If these models make successful predictions in independent tests, then they challenge the targeted symmetries. Crucially, our method handles filtered data, which often arise from inefficiencies or deliberate selections, and which could give the illusion of asymmetry if mistreated. We use examples to demonstrate how the method works and how the models' predictions can be interpreted. Code and data are available at  https://zenodo.org/record/6861702 .</description><subject>Analysis and statistical methods</subject><subject>Data reduction methods</subject><subject>Pattern recognition, cluster finding, calibration and fitting methods</subject><subject>Self-supervised learning</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUMFKAzEQDaJgrf6CBLwJayfZbDc5lmJVKOhBzyG7mW1TtrtrslX696asaA-Cp3nMvPdm5hFyzeCOgZQTlguZAOcsognIyQtI4OKEjH4Gp0f4nFyEsAHIVCZgRBYzusV-3Vrat7Rcm7rGZoU07Lex7R0G6hpqTW_op-vXNGBdJWHXof9wAS2t0fjGNatLclaZOuDVdx2Tt8X96_wxWT4_PM1ny6QUoPqkkBnyyjIJUlUixSIXjBeyUAiGTa1K4z_CCDE1ykhMWWpLK61SVcZVaY1Nx-Rm8O18-77D0OtNu_NNXKl5DplIc2AssqYDq_RtCB4r3Xm3NX6vGehDZvoQhz7EEZEGqYfMopAPQtd2v87_im7_EG1cE687JurOVukXriN8Mw</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Tombs, Rupert</creator><creator>Lester, Christopher G.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20220801</creationdate><title>A method to challenge symmetries in data with self-supervised learning</title><author>Tombs, Rupert ; Lester, Christopher G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-b85e2fd18089f43eb7412b8b9e0a16d930884a446a9a8e313dcd8d99f529cdad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis and statistical methods</topic><topic>Data reduction methods</topic><topic>Pattern recognition, cluster finding, calibration and fitting methods</topic><topic>Self-supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tombs, Rupert</creatorcontrib><creatorcontrib>Lester, Christopher G.</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tombs, Rupert</au><au>Lester, Christopher G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method to challenge symmetries in data with self-supervised learning</atitle><jtitle>Journal of instrumentation</jtitle><addtitle>J. Instrum</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>17</volume><issue>8</issue><spage>P08024</spage><pages>P08024-</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>Symmetries are key properties of physical models and of experimental designs, but any proposed symmetry may or may not be realized in nature. In this paper, we introduce a practical and general method to test such suspected symmetries in data, with minimal external input. Self-supervision, which derives learning objectives from data without external labelling, is used to train models to predict 'which is real?' between real data and symmetrically transformed alternatives. If these models make successful predictions in independent tests, then they challenge the targeted symmetries. Crucially, our method handles filtered data, which often arise from inefficiencies or deliberate selections, and which could give the illusion of asymmetry if mistreated. We use examples to demonstrate how the method works and how the models' predictions can be interpreted. Code and data are available at  https://zenodo.org/record/6861702 .</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/17/08/P08024</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-0221
ispartof Journal of instrumentation, 2022-08, Vol.17 (8), p.P08024
issn 1748-0221
1748-0221
language eng
recordid cdi_proquest_journals_2705437011
source Institute of Physics
subjects Analysis and statistical methods
Data reduction methods
Pattern recognition, cluster finding, calibration and fitting methods
Self-supervised learning
title A method to challenge symmetries in data with self-supervised learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A18%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20to%20challenge%20symmetries%20in%20data%20with%20self-supervised%20learning&rft.jtitle=Journal%20of%20instrumentation&rft.au=Tombs,%20Rupert&rft.date=2022-08-01&rft.volume=17&rft.issue=8&rft.spage=P08024&rft.pages=P08024-&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/17/08/P08024&rft_dat=%3Cproquest_cross%3E2705437011%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-b85e2fd18089f43eb7412b8b9e0a16d930884a446a9a8e313dcd8d99f529cdad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2705437011&rft_id=info:pmid/&rfr_iscdi=true