Loading…
Phytochemicals targeting NF-kB signaling: Potential anti-cancer interventions
Nuclear factor κB (NF-κB) is a ubiquitous regulator of the signalome and is indispensable for various biological cell functions. NF-κB consists of five transcription factors that execute both cytoplasmic and nuclear signaling processes in cells. NF-κB is the only signaling molecule that governs both...
Saved in:
Published in: | Journal of pharmaceutical analysis 2022-06, Vol.12 (3), p.394-405 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nuclear factor κB (NF-κB) is a ubiquitous regulator of the signalome and is indispensable for various biological cell functions. NF-κB consists of five transcription factors that execute both cytoplasmic and nuclear signaling processes in cells. NF-κB is the only signaling molecule that governs both pro- and anti-apoptotic, and pro- and anti-inflammatory responses. This is due to the canonical and non-canonical components of the NF-κB signaling pathway. Together, these pathways orchestrate cancer-related inflammation, hyperplasia, neoplasia, and metastasis. Non-canonical NF-κB pathways are particularly involved in the chemoresistance of cancer cells. In view of its pivotal role in cancer progression, NF-κB represents a potentially significant therapeutic target for modifying tumor cell behavior. Several phytochemicals are known to modulate NF-κB pathways through the stabilization of its inhibitor, IκB, by inhibiting phosphorylation and ubiquitination thereof. Several natural pharmacophores are known to inhibit the nuclear translocation of NF-κB and associated pro-inflammatory responses and cell survival pathways. In view of this and the high degree of specificity exhibited by various phytochemicals for the NF-κB component, we herein present an in-depth overview of these phytochemicals and discuss their mode of interaction with the NF-κB signaling pathways for controlling the fate of tumor cells for cancer-directed interventions. |
---|---|
ISSN: | 2095-1779 2214-0883 |
DOI: | 10.1016/j.jpha.2021.07.002 |