Loading…

Enhanced Adsorption, Photocatalytic Degradation Efficiency of Phenol Red Using CuZnAl Hydrotalcite Synthesized by Co-Precipitation Technique

ZnAlCO3 hydrotalcite materials modified by Cu2+ ions were synthesized by the co-precipitation method according to the molar ratios of (Cu2+ + Zn2+):Al3+ as 7:3. Thus, the modified materials contain various molar ratios of Cu2+ from 0–3.5 in the samples. The synthesized materials were characterized b...

Full description

Saved in:
Bibliographic Details
Published in:Processes 2022-08, Vol.10 (8), p.1555
Main Authors: Vu, Van Nhuong, Pham, Thi Ha Thanh, Nguyen, Quoc Dung, Vu, Thi Hau, Duong, Thi Tu Anh, Tran, Thi Hue, Tran, Thi Kim Ngan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ZnAlCO3 hydrotalcite materials modified by Cu2+ ions were synthesized by the co-precipitation method according to the molar ratios of (Cu2+ + Zn2+):Al3+ as 7:3. Thus, the modified materials contain various molar ratios of Cu2+ from 0–3.5 in the samples. The synthesized materials were characterized by X-ray diffraction pattern (XRD), FT–IR, EDS, SEM, the N2 adsorption/desorption isotherm (BET), and UV–Vis DRS spectrum. The synthesized materials were characterized by a layered double hydroxide structure—such as hydrotalcite. The specific surface area BET increases slightly, corresponding to the increasing Cu2+ molar ratios, and the bandgap energy Eg decreases accordingly. Especially, these material samples have a high phenol red (PR) adsorption capacity at a concentration of 100 ppm and PR was degraded under a 30 W LED light with over 90% of conversion efficiency in the presence of 1.2 mL of 30% H2O2 solution. In addition, the CuH–3.5 material sample maintained stability after four times catalytic reuse. Therefore, this material can be used as an effective treatment for the wastewater of the sedge mat weaving village.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr10081555