Loading…
Network Pharmacology and Molecular Docking Based Prediction of Mechanism of Pharmacological Attributes of Glutinol
Glutinol, a triterpenoid compound, has no documented systematic investigation into its mechanism. Hence, we used network pharmacology to investigate glutinol’s mechanism. The chemical formula of glutinol was searched in the PubChem database for our investigation. The BindingDB Database was utilized...
Saved in:
Published in: | Processes 2022-08, Vol.10 (8), p.1492 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c362t-d4369afc59b743645dbf7cb7fd1a122d8dee8851fb7962e22de097e325d83cfe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c362t-d4369afc59b743645dbf7cb7fd1a122d8dee8851fb7962e22de097e325d83cfe3 |
container_end_page | |
container_issue | 8 |
container_start_page | 1492 |
container_title | Processes |
container_volume | 10 |
creator | Alzarea, Sami I Qasim, Sumera Uttra, Ambreen Malik Khan, Yusra Habib Aljoufi, Fakhria A Ahmed, Shaimaa Rashad Alanazi, Madhawi Malhi, Tauqeer Hussain |
description | Glutinol, a triterpenoid compound, has no documented systematic investigation into its mechanism. Hence, we used network pharmacology to investigate glutinol’s mechanism. The chemical formula of glutinol was searched in the PubChem database for our investigation. The BindingDB Database was utilized to discover probable glutinol target genes after ADMET analysis with the pkCSM software. DAVID tools were also used to perform Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of target genes. We also uploaded the targets to the STRING database to obtain the protein interaction network at the same time. Then, we performed some molecular docking using glutinol and targets. Finally, we used Cytoscape to visualize and evaluate a protein–protein interaction network and a drug-target-pathway network. Glutinol has good biological activity and drug utilization, according to our findings. A total of 32 target genes were discovered. Bioinformatics and network analysis were used, allowing the discovery that these target genes are linked to carcinogenesis, diabetes, inflammatory response, and other biological processes. These findings showed that glutinol can operate on a wide range of proteins and pathways to establish a pharmacological network that can be useful in drug development and use. |
doi_str_mv | 10.3390/pr10081492 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2706282856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744992281</galeid><sourcerecordid>A744992281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-d4369afc59b743645dbf7cb7fd1a122d8dee8851fb7962e22de097e325d83cfe3</originalsourceid><addsrcrecordid>eNptUcFOwzAMrRBITGMXviASN6SOJmmb5jgGDKQBO8C5ShNny9Y2I0mF9vd0GtKGhH3ws_38LNlRdI2TMaU8uds6nCQFTjk5iwaEEBZzhtn5Cb6MRt6vk944pkWWDyL3BuHbug1arIRrhLS1Xe6QaBV6tTXIrhYOPVi5Me0S3QsPCi0cKCODsS2yGr2CXInW-GafnGgYKWo0CcGZqgvg991Z3QXT2voqutCi9jD6jcPo8-nxY_ocz99nL9PJPJY0JyFWKc250DLjFethmqlKM1kxrbDAhKhCARRFhnXFeE6gr0DCGVCSqYJKDXQY3Rx0t85-deBDubada_uVJWFJTgrSX-DIWooaStNqG5yQjfGynLA05ZyQAves8T-s3hU0RtoWtOnrfwZuDwPSWe8d6HLrTCPcrsRJuf9WefwW_QFST4cj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706282856</pqid></control><display><type>article</type><title>Network Pharmacology and Molecular Docking Based Prediction of Mechanism of Pharmacological Attributes of Glutinol</title><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Alzarea, Sami I ; Qasim, Sumera ; Uttra, Ambreen Malik ; Khan, Yusra Habib ; Aljoufi, Fakhria A ; Ahmed, Shaimaa Rashad ; Alanazi, Madhawi ; Malhi, Tauqeer Hussain</creator><creatorcontrib>Alzarea, Sami I ; Qasim, Sumera ; Uttra, Ambreen Malik ; Khan, Yusra Habib ; Aljoufi, Fakhria A ; Ahmed, Shaimaa Rashad ; Alanazi, Madhawi ; Malhi, Tauqeer Hussain</creatorcontrib><description>Glutinol, a triterpenoid compound, has no documented systematic investigation into its mechanism. Hence, we used network pharmacology to investigate glutinol’s mechanism. The chemical formula of glutinol was searched in the PubChem database for our investigation. The BindingDB Database was utilized to discover probable glutinol target genes after ADMET analysis with the pkCSM software. DAVID tools were also used to perform Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of target genes. We also uploaded the targets to the STRING database to obtain the protein interaction network at the same time. Then, we performed some molecular docking using glutinol and targets. Finally, we used Cytoscape to visualize and evaluate a protein–protein interaction network and a drug-target-pathway network. Glutinol has good biological activity and drug utilization, according to our findings. A total of 32 target genes were discovered. Bioinformatics and network analysis were used, allowing the discovery that these target genes are linked to carcinogenesis, diabetes, inflammatory response, and other biological processes. These findings showed that glutinol can operate on a wide range of proteins and pathways to establish a pharmacological network that can be useful in drug development and use.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr10081492</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Bioinformatics ; Biological activity ; Cancer ; Carcinogenesis ; Carcinogens ; Diabetes ; Diabetes mellitus ; Drug development ; Encyclopedias ; Energy ; Genes ; Genomes ; Inflammation ; Inflammatory response ; Insulin resistance ; Ligands ; Molecular docking ; Network analysis ; Pharmacology ; Proteins ; Software ; Steroids</subject><ispartof>Processes, 2022-08, Vol.10 (8), p.1492</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-d4369afc59b743645dbf7cb7fd1a122d8dee8851fb7962e22de097e325d83cfe3</citedby><cites>FETCH-LOGICAL-c362t-d4369afc59b743645dbf7cb7fd1a122d8dee8851fb7962e22de097e325d83cfe3</cites><orcidid>0000-0002-9479-6147 ; 0000-0002-7223-9788 ; 0000-0003-3336-4540 ; 0000-0003-4007-4023 ; 0000-0002-6082-6889 ; 0000-0001-9957-5362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2706282856/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2706282856?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,38516,43895,44590,74412,75126</link.rule.ids></links><search><creatorcontrib>Alzarea, Sami I</creatorcontrib><creatorcontrib>Qasim, Sumera</creatorcontrib><creatorcontrib>Uttra, Ambreen Malik</creatorcontrib><creatorcontrib>Khan, Yusra Habib</creatorcontrib><creatorcontrib>Aljoufi, Fakhria A</creatorcontrib><creatorcontrib>Ahmed, Shaimaa Rashad</creatorcontrib><creatorcontrib>Alanazi, Madhawi</creatorcontrib><creatorcontrib>Malhi, Tauqeer Hussain</creatorcontrib><title>Network Pharmacology and Molecular Docking Based Prediction of Mechanism of Pharmacological Attributes of Glutinol</title><title>Processes</title><description>Glutinol, a triterpenoid compound, has no documented systematic investigation into its mechanism. Hence, we used network pharmacology to investigate glutinol’s mechanism. The chemical formula of glutinol was searched in the PubChem database for our investigation. The BindingDB Database was utilized to discover probable glutinol target genes after ADMET analysis with the pkCSM software. DAVID tools were also used to perform Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of target genes. We also uploaded the targets to the STRING database to obtain the protein interaction network at the same time. Then, we performed some molecular docking using glutinol and targets. Finally, we used Cytoscape to visualize and evaluate a protein–protein interaction network and a drug-target-pathway network. Glutinol has good biological activity and drug utilization, according to our findings. A total of 32 target genes were discovered. Bioinformatics and network analysis were used, allowing the discovery that these target genes are linked to carcinogenesis, diabetes, inflammatory response, and other biological processes. These findings showed that glutinol can operate on a wide range of proteins and pathways to establish a pharmacological network that can be useful in drug development and use.</description><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Cancer</subject><subject>Carcinogenesis</subject><subject>Carcinogens</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Drug development</subject><subject>Encyclopedias</subject><subject>Energy</subject><subject>Genes</subject><subject>Genomes</subject><subject>Inflammation</subject><subject>Inflammatory response</subject><subject>Insulin resistance</subject><subject>Ligands</subject><subject>Molecular docking</subject><subject>Network analysis</subject><subject>Pharmacology</subject><subject>Proteins</subject><subject>Software</subject><subject>Steroids</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNptUcFOwzAMrRBITGMXviASN6SOJmmb5jgGDKQBO8C5ShNny9Y2I0mF9vd0GtKGhH3ws_38LNlRdI2TMaU8uds6nCQFTjk5iwaEEBZzhtn5Cb6MRt6vk944pkWWDyL3BuHbug1arIRrhLS1Xe6QaBV6tTXIrhYOPVi5Me0S3QsPCi0cKCODsS2yGr2CXInW-GafnGgYKWo0CcGZqgvg991Z3QXT2voqutCi9jD6jcPo8-nxY_ocz99nL9PJPJY0JyFWKc250DLjFethmqlKM1kxrbDAhKhCARRFhnXFeE6gr0DCGVCSqYJKDXQY3Rx0t85-deBDubada_uVJWFJTgrSX-DIWooaStNqG5yQjfGynLA05ZyQAves8T-s3hU0RtoWtOnrfwZuDwPSWe8d6HLrTCPcrsRJuf9WefwW_QFST4cj</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Alzarea, Sami I</creator><creator>Qasim, Sumera</creator><creator>Uttra, Ambreen Malik</creator><creator>Khan, Yusra Habib</creator><creator>Aljoufi, Fakhria A</creator><creator>Ahmed, Shaimaa Rashad</creator><creator>Alanazi, Madhawi</creator><creator>Malhi, Tauqeer Hussain</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9479-6147</orcidid><orcidid>https://orcid.org/0000-0002-7223-9788</orcidid><orcidid>https://orcid.org/0000-0003-3336-4540</orcidid><orcidid>https://orcid.org/0000-0003-4007-4023</orcidid><orcidid>https://orcid.org/0000-0002-6082-6889</orcidid><orcidid>https://orcid.org/0000-0001-9957-5362</orcidid></search><sort><creationdate>20220801</creationdate><title>Network Pharmacology and Molecular Docking Based Prediction of Mechanism of Pharmacological Attributes of Glutinol</title><author>Alzarea, Sami I ; Qasim, Sumera ; Uttra, Ambreen Malik ; Khan, Yusra Habib ; Aljoufi, Fakhria A ; Ahmed, Shaimaa Rashad ; Alanazi, Madhawi ; Malhi, Tauqeer Hussain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-d4369afc59b743645dbf7cb7fd1a122d8dee8851fb7962e22de097e325d83cfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Cancer</topic><topic>Carcinogenesis</topic><topic>Carcinogens</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Drug development</topic><topic>Encyclopedias</topic><topic>Energy</topic><topic>Genes</topic><topic>Genomes</topic><topic>Inflammation</topic><topic>Inflammatory response</topic><topic>Insulin resistance</topic><topic>Ligands</topic><topic>Molecular docking</topic><topic>Network analysis</topic><topic>Pharmacology</topic><topic>Proteins</topic><topic>Software</topic><topic>Steroids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alzarea, Sami I</creatorcontrib><creatorcontrib>Qasim, Sumera</creatorcontrib><creatorcontrib>Uttra, Ambreen Malik</creatorcontrib><creatorcontrib>Khan, Yusra Habib</creatorcontrib><creatorcontrib>Aljoufi, Fakhria A</creatorcontrib><creatorcontrib>Ahmed, Shaimaa Rashad</creatorcontrib><creatorcontrib>Alanazi, Madhawi</creatorcontrib><creatorcontrib>Malhi, Tauqeer Hussain</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alzarea, Sami I</au><au>Qasim, Sumera</au><au>Uttra, Ambreen Malik</au><au>Khan, Yusra Habib</au><au>Aljoufi, Fakhria A</au><au>Ahmed, Shaimaa Rashad</au><au>Alanazi, Madhawi</au><au>Malhi, Tauqeer Hussain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network Pharmacology and Molecular Docking Based Prediction of Mechanism of Pharmacological Attributes of Glutinol</atitle><jtitle>Processes</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>10</volume><issue>8</issue><spage>1492</spage><pages>1492-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Glutinol, a triterpenoid compound, has no documented systematic investigation into its mechanism. Hence, we used network pharmacology to investigate glutinol’s mechanism. The chemical formula of glutinol was searched in the PubChem database for our investigation. The BindingDB Database was utilized to discover probable glutinol target genes after ADMET analysis with the pkCSM software. DAVID tools were also used to perform Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of target genes. We also uploaded the targets to the STRING database to obtain the protein interaction network at the same time. Then, we performed some molecular docking using glutinol and targets. Finally, we used Cytoscape to visualize and evaluate a protein–protein interaction network and a drug-target-pathway network. Glutinol has good biological activity and drug utilization, according to our findings. A total of 32 target genes were discovered. Bioinformatics and network analysis were used, allowing the discovery that these target genes are linked to carcinogenesis, diabetes, inflammatory response, and other biological processes. These findings showed that glutinol can operate on a wide range of proteins and pathways to establish a pharmacological network that can be useful in drug development and use.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr10081492</doi><orcidid>https://orcid.org/0000-0002-9479-6147</orcidid><orcidid>https://orcid.org/0000-0002-7223-9788</orcidid><orcidid>https://orcid.org/0000-0003-3336-4540</orcidid><orcidid>https://orcid.org/0000-0003-4007-4023</orcidid><orcidid>https://orcid.org/0000-0002-6082-6889</orcidid><orcidid>https://orcid.org/0000-0001-9957-5362</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2022-08, Vol.10 (8), p.1492 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2706282856 |
source | Publicly Available Content Database; Coronavirus Research Database |
subjects | Bioinformatics Biological activity Cancer Carcinogenesis Carcinogens Diabetes Diabetes mellitus Drug development Encyclopedias Energy Genes Genomes Inflammation Inflammatory response Insulin resistance Ligands Molecular docking Network analysis Pharmacology Proteins Software Steroids |
title | Network Pharmacology and Molecular Docking Based Prediction of Mechanism of Pharmacological Attributes of Glutinol |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20Pharmacology%20and%20Molecular%20Docking%20Based%20Prediction%20of%20Mechanism%20of%20Pharmacological%20Attributes%20of%20Glutinol&rft.jtitle=Processes&rft.au=Alzarea,%20Sami%20I&rft.date=2022-08-01&rft.volume=10&rft.issue=8&rft.spage=1492&rft.pages=1492-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr10081492&rft_dat=%3Cgale_proqu%3EA744992281%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-d4369afc59b743645dbf7cb7fd1a122d8dee8851fb7962e22de097e325d83cfe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706282856&rft_id=info:pmid/&rft_galeid=A744992281&rfr_iscdi=true |